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- Two-photon-induced metal ion reduction
- Self-organization process using DNA template
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Manipulate light (photons)

refraction reflection

e

~ -

dispersion

\)

diffraction

The degree of freedom of the controllability of the
light propagation is limited/determined by
the variety of refractive indices of materials.
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Negative Magnetic Permeability in the Visible Light Region
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ive magnetic pcnnublllw of single split-ring resoaators (SSRRs) is theoeetically investigated in Zs =Rs +i Xs
the visible light region. To describe the conduction chamcteristics of metal in the visible range, we
develop the mternal impedance formula compleiely. In oar calculations, we determine the magnetic
responses of the SSRR ately. Basad on our we the negative 2 of the
silver SSRR armay in the visible light region. Rs:surface resistance

DOI: 10,1 103/PhysRevLets 95237400 PACS numbers: TR20.CE, 7320MF, TR20.8h Xs:internal reactance
T :penetration depth

Recently, controlling optical properties of materials by _ 1 _ " % a
an array of metallic subwavelength-structurcd cbjects has Aol = o)~ Rl H @), @) w :width of the ring
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Using plasmonic oscillation of free electrons inside the
metal nano structures for control both &€ &u

Change of effective mass of electron -> change wp -> change €

Electron’s oscillation (Current flow) -> change u

attracted much intcrest from rescarchers. This artificial
material referred to as “metamaterial * conceptually ena-
bles us to freely specify the permittivity (&) and the per-
meability () in & pamicular frequency region. In
pasticular, a split-ring resonator (SRR) [1], which acts as
an artificial magnetic atom, is a powerful tool for oblaining
a negative i, with which we can create a left-handed
material (LHM) cxhibiting unique ckctromagnetic phe-
nomena [2]. By using the SRR, negative o materials and
LHMs have already been demonstrated in the microwave

where 8(a) is the skin depth [10]. The real and imaginary
parts of Z, () arc the surface resistivity R, and the internal
reactance X,, respectively. In the optical freguency region,
Eq. (2). including the skin effect, enables us lo describe the
conduction characteristics properly. However, particularly
in the frequency region above 100 THz, which is our
interest, we must consider not only the delay of the current
but also the displacement current inside the metal To
describe these phenomena, we derived the following equa-
tion for the intermnal impedance of the planc conductor from
the Maxwell's equations without any approximation:




Properties of metals

F :filling factor

Cg : geometrical capacitance

Lg : geometrical inductance
Z(w) : impedance of the circuit

How to make?

nano-scale 3D metal strcuture

Developed new fabrication technique for
3D metal structures.

Phys. Rev. Lett. 95, 237401 (2005).
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(1) Two-photon reduction technique

J. Opt. Soc. Am. B, 24, 510 (2007).
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Direct drawing metal structures by light spot
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High conductive metal structures

Irradiation UV light (One photon absorption)

Ultraviolet lons on the light path were
reduced

Metal-ions

not suitable for 3D fabrication

metallize ions only at the laser beam spot.
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Irradiate tightly focused fsec pulse NIR laser

Two-photon absorption
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Equivalent to UV irradiation
at the laser beam spot.

Two-photon reduction of complex metal ions
Au3* doped PMMA
(A =800nm, two-photon reduction, Stage-scan )

Direct drawing of Au wires of 1 um in width.

Energy of two photons are added.
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Preparation of gold trimer ring
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Conclusion

- Brief introduction of plasmonic metamaterials

- Fabrication techniques for 3D metamaterials
Two-photon reduction technique.

Inhibition of crystallization of metal is crucial

Self-organized formation of metal ring structure
using DNA-templates

gold trimer ring

Ohshiro, T.; Zako, T.; Watanabe-Tamaki, R.; Tanaka, T.; Maeda, M.

Chem. Commun., 2010, 46, 6132-6134.
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Experimental

modified with 3-aminopropyl
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- detailed observation & analysis on ring geometry
- numerical calculation
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Figure 4. In-plane symmetry adapted coordinutes (SAC) for dipolar
modes in a trimer system with Dy symmetry. The six I
independent SACs form an orthonormal system that can be us
basis for an arbitrary combination of in-plane particle dipole:
stands for the collective breathing-mode, “R” for the rotation mode,
X3/Y for the bonding (low energy) modes polarized along x/y and
X /Y an stands for the corresponding antibonding (high energy) modes.
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Figure 6. Electric field enhancement distributions obtained from FDTD
simulation of a Ag trimer (D = 100 nm, ¢ = 20 nm, d = 40 nm) in
o o immersion oil (n = 1.51) at the peak wavelengths indicated in the

accompanying extinction spectrum. The field plot is made in a plane 3
nm above the particle surfaces
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Plasmon Modes of Nanosphere Trimers and Quadrumers
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STEM observation of triangle rings
CLI used trimer

100nm |

Relationship between ring structure and shape of AuNP

Uniformity of the
spherical shape of

AuNP increases the
yield of the triangle.






