

Outline

- 1. Plasmonic Metamaterials Background
- 2. Structures of plasmonic metamaterials that works in visible light region
- 3. Fabrication techniques for 3D metamaterials
- Magnetic assembly of 3D metamaterials
 ((Two-photon-induced metal ion reduction))

light (propagation) is limited/determined by the variety of refractive indices of materials.

Change of effective mass of electron -> change $\omega_{\rm P}$ -> change ε Electron's oscillation (Current flow) -> change μ 9 ∞

On the other hand, in the high frequency region above

	J. Opt. Soc. Am. B, 24, 510 (2007).	
Design strategy of nano-resonator		
frequency	~ 100THz	100THz ~
structure	double ring SRR	single ring SRR
required	large C & wide ring	small C & large L
resonant frequency	$f_{0} = \frac{1}{2\pi\sqrt{CL}}$	$f_0 < \frac{1}{2\pi\sqrt{CL}}$
magnetic response	decreased due to resistance: <i>Rs</i>	saturation due to the decrease of L

Ring: Polystyrene beads: φ=1.0 μm

Core: Paramagnetic beads: $\phi=2.7 \mu m$

Disassembly

Assembly Core: Paramagnetic beads: <u>φ=1.0 μm</u> Ring: Polystyrene beads: φ=1.0 μm

Conclusion

- Brief introduction of plasmonic metamaterials
 Fabrication techniques for 3D metamaterials Magnetic formation of metal ring structures

Conclusion Brief introduction of plasmonic metamaterials Fabrication techniques for 3D metamaterials Magnetic formation of metal ring structures Two-photon reduction technique. Inhibition of crystallization of metal is crucial Combination of topdown and bottomup techniques will be crucial