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The degree of freedom of the controllability of the
light (propagation) is limited/determined by
the variety of refractive indices of materials.
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Plasmonic Metamaterials

Theoretically investigation of metamaterials in visib
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Negative Magnetic Permeability in the Visible Light Region
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ive magnetic pczmublllw of single split-ring resonators (SSRRs) is theoeetically investigated in
the visible light region. To describe the conduction chamcteristics of metal in the visible range, we
de; internal impedance formula completely. In oar calculations, we determine the magnetic
resgonses of the SSRR accuratoly. Basad on oar we the aegative s of the
silver SSRR array in the visible light regica.

Zs=Rs +iXs

Visible
Rs:surface resistance N\ | Range
Xstinternal reactance . 10 10C 1000}
T :penetration depth Frequency [THz]

w :width of the ring

Surface Resistivity(i
Internal Reactance
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Recently, controlling optical properties. of materials by
an array of metallic subwavelength-structured objects has
attracted much intcrest from rescarchers. This artificial
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Using plasmonic oscillation of free electrons inside the

metal nano structures for control both &€ &u

Change of effective mass of electron -> change wp -> change €

Electron’s oscillation (Current flow) -> change u
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material referred to as “metamaterial * conceptually ena-
bles us to freely specify the permittivity (&) and the per-
meability () in & pamicular frequency region. In
pasticular, a split-ring resonator (SRR) [1], which acts as
an artificial magnetic atom, is a powerful tool for oblaining
a negative i, with which we can create a left-handed
material (LHM) cxhibiting unique ckctromagnetic phe-
nomena [2]. By using the SRR, negative o materials and
LHMs have already been demonstrated in the microwave
region [3.4].

On the other hand. in the hish freauency reeion sbove

where 8(a) is the skin depth [10]. The real and imaginary
parts of Z, () arc the surface resistivity R, and the internal
reactance X,, respectively. In the optical freguency region,
Eq. (2). including the skin effect, enables us lo describe the
conduction characteristics properly. However, particularly
in the frequency region above 100 THz, which is our
interest, we must consider not only the delay of the current
but also the displacement current inside the metal To
describe these phenomena, we derived the following equa-
tion for the intermnal impedance of the planc conductor from
the Maxwell's equations without any approximation:
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Circular alignment of nanoparticles
using static magnetic field
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Nano-size metal particles aligned roundly
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Paramagnetic bead
R. Erb Nature 457, 999 (2009). [
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Paramagnetic bead

R. Erb Nature 457, 999 (2009)

Two configurations
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Diamagnetic bead

Magnetic self-assembly of a ring resonator
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Polystyrene beads have better dispersibility

argmagnetic beads: ¢=2.7 um
’ ene beads: ¢=1.0 um

amagnetic beads
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:P netic beads: ¢=2.7 um
: Boly, ads: ¢=1.0 um
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Assembly - triangle lattice

Core: Paramagnetic beads: ¢=2.7 um
Ring: Polystyrene beads: ¢=1.0 um

Assembly

Core: Polystyrene beads: ¢=5.0 um
Ring: Paramagnetic beads: ¢=2.7 um

Disassembly

Core: Paramagnetic beads: ¢=2.7 um
Ring: Polystyrene beads: ¢=1.0 um

agnetic beads: ¢ 2.7 um
igles: ¢ 1.0 um

Controllability of ring structure
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Assembly

Core: Paramagnetic beads: ¢=1.0 um
Ring: Polystyrene beads: ¢=1.0 um
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Two-photon reduction technique
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Conclusion

+ Brief introduction of plasmonic metamaterials

+ Fabrication techniques for 3D metamaterials
Magnetic formation of metal ring structures
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Direct drawing metal structures by light spot

Two-photno absorption
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(2) Two-photon reduction technique

Irradiation UV light (One photon absorption)

lons on the light path were
reduced

Ultraviolet

Metal-ions

not suitable for 3D fabrication

metallize ions only at the laser beam spot.

Silver

AuHCl4

diameter = 10, 20um




Two-photogrgducti@n of complex metal ions
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Conclusion
- Brief introduction of plasmonic metamaterials

- Fabrication techniques for 3D metamaterials
Magnetic formation of metal ring structures

Two-photon reduction technique.
Inhibition of crystallization of metal is crucial
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Combination of topdown and bottomup techniques
will be crucial
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