

テラヘルツ波増強のための金ナノフィンアレイ構造 Gold nano-fin array for THz wave enhancement ○田中拓男1.2, 久保若奈1, 藤川茂紀3, 小泉真理3 T. Tanaka^{1, 2}, W. Kubo¹, S. Fujikawa³, and M. Koizumi³

理研田中メタマテリアル研究室1,北大電子研2,理研界面ナノ構造研究チーム3

Introduction

Surface plasmon (SP) is used for bio-/chemical-sensors, non-linear effects, high-resolution imaging, and so on using its high-k and field enhancement properties.

However, these properties are achieved only in the higher frequency region.

No large-k, No field enhancement in low frequency region such as THz waves.

Fabrication & Measurement

Fabrication Process (Sidewall lithography technique)

1. Patterning of photoresist

Au fins can be fabricated over wide area with high-aspect ratio. The pitch and height of the fins are controlable.

Results

1. Dependence on Pol.& Incident direction 2. Dependence on pitch

2. Au coating

THz Vis

Surface plasmon in THz (Spoof Plasmon)

metal as the function of the frequency.

(metamaterials).

ω-k dispersion is originated from the electrical permittivity of the

The electrical permittivity is determined by surface structure

Grating (1D) or hole-array(2D) can support surface modes.

Measurement of reflection spectrum

Polarization: p- and s-Incident angle: 5 ~ 85 deg In vacuo Alignment: paralell and vertical to fins

Calculation results by RCWA

Summary

Metal surface with periodic fin structure was fabricated by sidewall lithography technique, and then the reflection spectra were measured in mid-infrared region. Absorption peaks were observed only with p-polarization at vertical incidence to the fin structures. It was confirmed that the absorption peaks depend on the pitch and the height of the fin structures.