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Edge enhanced depth perception with binocular
meta-lens
Xiaoyuan Liu1,2,3, Jingcheng Zhang1, Borui Leng1, Yin Zhou1,
Jialuo Cheng1, Takeshi Yamaguchi4,5,6, Takuo Tanaka4,5,6* and
Mu Ku Chen1,2,3*

The increasing popularity of the metaverse has led to a growing interest and market size in spatial computing from both
academia and industry. Developing portable and accurate imaging and depth sensing systems is crucial for advancing
next-generation virtual  reality  devices.  This work demonstrates an intelligent,  lightweight,  and compact edge-enhanced
depth perception system that utilizes a binocular meta-lens for spatial computing. The miniaturized system comprises a
binocular meta-lens, a 532 nm filter, and a CMOS sensor. For disparity computation, we propose a stereo-matching neu-
ral network with a novel H-Module. The H-Module incorporates an attention mechanism into the Siamese network. The
symmetric architecture, with cross-pixel interaction and cross-view interaction, enables a more comprehensive analysis
of contextual information in stereo images. Based on spatial intensity discontinuity, the edge enhancement eliminates ill-
posed regions in the image where ambiguous depth predictions may occur due to a lack of texture. With the assistance
of  deep  learning,  our  edge-enhanced  system  provides  prompt  responses  in  less  than  0.15  seconds.  This  edge-en-
hanced depth perception meta-lens imaging system will significantly contribute to accurate 3D scene modeling, machine
vision, autonomous driving, and robotics development.
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 Introduction
Spatial  computing1 and  the  emerging  meta-verse  repre-
sent a paradigm shift in how humans interact with a ma-
chine.  Spatial  computing refers  to  integrating digital  in-
formation  and  virtual  objects  into  the  physical  world,
creating  a  mixed  reality  where  the  boundaries  between
the  digital  and  physical  realms  are  blurred.  Common
augmented  reality  devices  rely  on  spatial  computing  to

perceive  the  depth  of  the  real  physical  world  while  em-
bedding virtual objects into real scenes three-dimension-
ally2. One of the key technologies of spatial computing is
its depth perception capability, which bridges the gap be-
tween the physical  and digital  realms. This promises in-
tuitive  and  natural  interaction  with  virtual  objects.
Therefore,  digital  information  can  be  correctly  placed
and  manipulated  in  the  scene  following  physical  laws.
However,  the  weight  and  volume  of  traditional  depth 
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sensing  systems  result  in  a  lack  of  comfort  in  human-
computer  interaction  wearable  devices,  which  contain
many sensors (mainly cameras and LiDAR). At the same
time, the space occupied by bulky sensors also limits bat-
tery life,  causing the device to need to be recharged fre-
quently.  Advancements  in  portable  and  accurate  imag-
ing and depth sensing systems are crucial for next-gener-
ation human-computer interaction wearable devices.

Complementing  spatial  computing,  binocular  meta-
lens3 offers  a  breakthrough  approach  to  depth  sensing
and imaging with the advantages of being lightweight4, 5,
thin,  and  compact.  Meta-lens  create  advanced  optical
functionalities  that  surpass  the  limitations  of  traditional
optics6, 7,  such  as  wavefront  shaping8,  polarization  con-
trol9-11,  and spectral  manipulation12, 13.  Meta-lens utilizes
nanoantennas to manipulate light14, offering an opportu-
nity  for  engineering  optical  properties  such  as  thinness,
flatness, broadband capability15, high diffraction efficien-
cy16,  extreme  depth-of-field17,  and  compatibility  with
complementary  metal-oxide-semiconductor  (CMOS)
technology. By leveraging the unique properties of meta-
optics,  this  compact  and  miniaturized  optical  meta-de-
vice allows for capturing three-dimensional information
from the surrounding environment. Binocular meta-lens
enable precise and accurate depth perception,  similar  to
human binocular  vision.  In  recent  years,  the  support  of
artificial  intelligence  has  increasingly  promoted  the  de-
velopment of meta-devices in terms of inverse design18, 19,
prompt  data  analysis20, 21,  optical  computation22, 23,  and
intelligent  reconfigurable  meta-devices24, 25.  These  ad-
vancements  pave  the  way  for  compact,  lightweight,  and
highly  efficient  optical  systems seamlessly  integrated in-
to  spatial  computing  devices,  enhancing  their  perfor-
mance and enabling novel applications.

The principle underlying depth acquisition in binocu-
lar  imaging  relies  on  presenting  a  stereo-image  pair  ex-
hibiting  discernible  disparities26.  Disparity  denotes  the
horizontal displacement between corresponding pixels in
the left and right images. Traditional binocular disparity
computation  pipeline  often  entails  the  utilization  of
block matching algorithms for calculating matching loss-
es27.  The  combination  of  deep  learning  and  photonics
has  been  widely  researched  in  recent  years,  encompass-
ing  applications  such  as  orbital  angular  momentum
communication28,  optical  neural  networks29,  optical  en-
cryption30,  enhancing  holographic  data  storage  (HDS)31,
photonic  inverse  design32 and  hyperspectral  imaging33.
Nonetheless,  convolutional  neural  networks  (CNNs)

have garnered greater preference owing to their inherent
advantages  of  rapidity,  precision,  and  operational  sim-
plicity in processing. Despite significant advancements in
accuracy and speed achieved by various binocular stereo
systems,  finding  accurate  corresponding  points  within
inherently  ill-posed  regions  for  depth  computation  re-
mains  challenging,  such  as  textureless  areas  and  reflec-
tive  surfaces34.  Ambiguous  depth  prediction  has  a  seri-
ous  impact  on  subsequent  machine  decision-making.
Edge is the typical representation of texture. There must
be  texture  feature  points  in  the  edge  area  for  stereo
matching.  Numerous  studies  have  explored  edge  detec-
tion  techniques  utilizing  meta-lenses,  each  with  distinct
characteristics. For instance, the Green function35, 36, and
spiral phase37 have been employed to enable edge detec-
tion  using  a  single  meta-lens.  Another  approach  in-
volves  utilizing  meta-lens  arrays  for  three-dimensional
(3D)  edge  detection38.  Polarization  control  has  been
leveraged  for  switchable  bright  field  imaging  and  edge
detection  capabilities39, 40.  Edge  detection  by  the  Pan-
charatnam–Berry  phase41 has  emerged  as  a  noteworthy
technique,  demonstrating potential  in quantum applica-
tions42.  Edge-based  depth  perception  offers  superior  fi-
delity in the estimation of depth. Within the framework
of  depth  edge  views,  non-textured  regions  that  lack
prominent  edges  or  transitions  are  efficiently  discarded.
This filtering process reduces the impact of unreliable or
ambiguous  depth  information  originating  from texture-
less regions, thereby enhancing the overall  accuracy and
reliability of depth estimation. By focusing on edges that
signify  depth  discontinuities,  edge-based  depth  percep-
tion provides  a  more resilient  and accurate  depiction of
depth.

We develop an edge-enhanced depth perception based
on binocular meta-lens for spatial computing. The whole
system is miniaturized, intelligent, lightweight and com-
pact.  Its  physical  working  mechanism  consists  of  a
binocular lens, a 532 nm filter, and a CMOS sensor. Each
meta-lens,  measuring  2.6  mm  in  diameter,  weighs
2.45×10−5 g and occupies a volume of 3.98×10−6 cm3. The
weight of the Sapphire substrate is 0.115 g with a volume
of 0.0288 cm3.  Thin  and  flat  nature  make  it  simple  in
both  physical  system  configuration  and  image  process-
ing  pipeline.  Without  preprocessing,  the  raw  captured
image  is  processed  directly  by  our  proposed  pyramid
stereo-matching  neural  network,  H-Net,  to  obtain  the
disparity.  A  novel  symmetric  H-module  with  an  atten-
tion  mechanism  allows  the  H-Net  to  dynamically
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allocate resources based on the significance of contextu-
al  features of  each view and the correlation between the
left and right views. With depth-sensing results, an edge
enhancement is  performed to filter  the feature informa-
tion that detects the 3D space gradients.

Figure 1 demonstrates  the  edge-enhanced  depth  per-
ception system schematic  with  our  binocular  meta-lens.
There  are  two  letter  objects  in  front  of  the  binocular
stereo-vision meta-lens.  The application scenario shown
in Fig. 1 has  ill-posed regions,  such as  the  letter  objects'
unpatterned  backgrounds  and  untextured  surfaces.  But
with the support of a proposed neural network for com-
prehensive  context  analysis  and  a  Canny  edge  detector
for filtering,  an edge-enhanced depth perception view is
realized, perceiving both intensity and depth discontinu-
ities simultaneously.

The  convergence  of  spatial  computing  and  meta-op-
tics  holds  immense  potential  for  transforming our  daily
lives.  From  augmented  and  virtual  reality  experiences
that  blend seamlessly  with our physical  surroundings to
smart  glasses  that  provide  personalized  information
overlays,  edge-enhanced  spatial  computing  powered  by
meta-optics  promises  to  revolutionize  how  we  perceive
and interact  with  the  world  around us.  This  integration
can lead to  breakthroughs  in  robotics,  autonomous  sys-
tems,  underwater  exploration,  and  medical  imaging,
where  accurate  depth  perception  is  crucial  for  naviga-

tion, object recognition, and scene reconstruction.

 Methods

 Simulation and fabrication
We  utilize  the  commercial  simulation  software  COM-
SOL Multiphysics® to design and analyze the unit cells of
the  meta-lens.  We  set  periodic  boundary  conditions  for
the x and y directions  and  a  perfect  match  layer  (PML)
boundary  condition  for  the z-direction.  The  meta-lens
consists of unit cells of gallium nitride (GaN) cylindrical
nanopillars on a sapphire substrate. The diameter of the
nanopillars varies across the meta-lens. The refractive in-
dex of the sapphire substrate is set to 1.77, while the re-
fractive index of GaN at the working wavelength is 2.42.
Using  this  configuration,  we  calculate  the  cylindrical
nanopillars' simulated  transmission  spectra  and  phase
shift,  as  shown  in  Supplementary information Fig.  S1.
The meta-atom arrangement layout for fabrication is de-
signed according to the focusing phase distribution 

φ (x, y, λ) = −
[
2π
λ

(√
x2 + y2 + f2 − f

)]
, (1)

φ (x, y, λ)
(x, y)

λ = 532 nm f

in  which  is  the  phase  compensation  require-
ment  at  the  position  under  the  illumination  of
wavelength ,  is  the  desired  focal  length  of
10.0  mm.  The  target  diameter  of  each  meta-lens  is  2.6
mm.

The  proposed  binocular  meta-lens  is  fabricated  by
 

Fig. 1 | Schematic of the edge-enhanced spatial computing with binocular meta-lens. There are two letter objects in front of the binocular

meta-lens, which are texture-less and have no background. A binocular meta-lens is designed and fabricated to develop the stereo vision sys-

tem for texture-less spatial computing scenarios. An edge-enhanced depth perception is realized with the support of a proposed neural network.
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adopting the following process (see details in Supporting
Information Fig.  S2):  A 750-nm-thick GaN is  firstly  de-
posited on a sapphire substrate via metalorganic chemi-
cal  vapor  deposition  (MOCVD).  A  200-nm-thick  SiO2

film,  which serves  as  the  hard mask for  pattern transfer
to the GaN layer with a high aspect ratio, is subsequently
deposited using an E-gun evaporator.  A PMMA layer is
spin-coated  on the  SiO2 film,  followed by  pre-baking  at
180 °C for 3 min. A layer of conductive polymer is then
spin-coated  on  the  PMMA  to  avoid  charge  accumula-
tion. The PMMA layer is exposed under EBL (ELS-HS50,
ELIONIX  INC.)  for  pattern  definition.  After  being  im-
mersed  in  DI  water  to  remove  the  conductive  polymer
layer,  the  patterned  sample  is  developed  with  methyl
isobutyl ketone (MIBK)/ isopropyl alcohol (IPA) for 75 s
and is rinsed in IPA for 20 s. An additional Cr layer with
40 nm thickness is deposited on the patterned sample us-
ing an E-gun evaporator. Followed by the lift-off process
in  Acetone,  the  pattern  is  transferred  into  the  Cr  layer.
Taking  the  Cr  layer  as  the  hard  mask,  the  SiO2 layer  is
etched  by  inductively  coupled  plasma reactive  ion  etch-
ing (ICP-RIE) with CF4 gas. Chromium etchant is adopt-
ed to remove the remaining Cr. A second ICP-RIE with a
mixture of Ar and Cl2 is applied for pattern transfer from
the patterned SiO2 film to the GaN film. After removing
the residual SiO2 using a buffered oxide etch (BOE) solu-
tion, the desired GaN nanostructure on the sapphire sub-
strate is finally realized.

Figure 2(a) demonstrates the optical image of fabricat-
ed  binocular  meta-lens.  The  fabrication  process  of  the
well structure was characterized based on scanning elec-
tron  microscope  (SEM)  images.  There  is  no  cracks  or
pores on the fabricated nanopillars, as shown in the top-
view SEM image of Fig. 2(b). From the zoomed-in tilted
view of  the nanopillar  SEM image in Fig. 2(c),  the good
collimation  of  the  750-nm  high  nanopillars  can  be  ob-
served  with  precise  etching.  The  physical  dimension
analysis of the binocular sample is divided into two parts:

the  sapphire  substrate  and  two  GaN  meta-lens.  Each
meta-lens, measuring 2.6 mm in diameter with a volume
of  4.25×10−6 cm3,  weighs  2.61×10−5 g,  which  is  lighter
than  one  percent  of  the  weight  of  a  hair.  The  weight  of
the  sapphire  substrate  is  0.115 g  and occupies  a  volume
of 0.0288 cm3. Even though the sapphire substrate brings
much  more  occupation,  the  overall  weight  and  volume
are still tiny and ignorable.

For  disparity  computation,  we  propose  a  pyramid
stereo-matching  neural  network  (named  H-Net)  with  a
novel  "H"-shaped  attention  module  (H-Module),  as
shown  in Fig. 3(a).  The  H-Net  follows  an  end-to-end
learning framework from stereo input images to dispari-
ty  map  prediction  without  any  other  pre-  or  post-pro-
cessing.  The global  context aggregation is  vital  to derive
the  disparity  information  from  stereo  image  pairs.  Be-
sides the conventional encoder-decoder architecture and
pyramid  pooling,  H-Net  adopts  cross-pixel  interaction
and  cross-view  interaction  to  enable  the  utilization  of
contextual  information  and  the  integration  of  diverse
perspectives  (see  details  in  Supplementary information
Section  4).  Compared  with  the  conventional  block
matching method43 and two advanced neural networks34,

44,  H-Net  demonstrates  significant  performance  im-
provements  and  more  comprehensive  analysis.  (see  de-
tails  in  Supplementary  information  Section  5)  With  the
backbone  of  PSMNet34,  the  head  of  H-Net  is  a  Siamese
network45,  whose  two branch networks  are  weight  shar-
ing. These head Siamese CNNs utilize residual blocks46 to
extract  features  and  weight-sharing  spatial  pyramid
pooling  (SPP)  modules34 to  aggregate  context  informa-
tion.  The  output  left  and  right  feature  maps  from  the
head  backbone  (Siamese  CNNs)  are  integrated  by  the
proposed  H-Module.  The  introduction  of  H-Module
with  attention  mechanism47, 48 allows  the  model  to  dy-
namically allocate its attention or resources based on the
relevance or significance of specific features or contexts.
H-Module is a symmetric processing pipeline composed

 

a b c

5 mm 1 μm 1 μm

Fig. 2 | Optical and SEM images of fabricated binocular meta-lens. (a) Optical image of the binocular meta-lens. (b) The zoomed-in top-view

SEM image of the meta-lens. (c) The zoomed-in tilted-view SEM image at the edge of the meta-lens.

Liu XY et al. Opto-Electron Sci  3, 230033 (2024) https://doi.org/10.29026/oes.2024.230033

230033-4

 

https://doi.org/10.29026/oes.2023.230033


of four cross-pixel interaction blocks and one cross-view
interaction  block.  Cross-pixel  interaction  is  the  mutual
interaction or influence between pixels in an image or vi-
sual  representation.  It  involves considering the relation-
ships  and  dependencies  between  neighboring  pixels  to
capture contextual  information and improve the under-
standing  or  analysis  of  the  image.  As  illustrated  in Fig.
3(b),  the  left  and  right  feature  maps  are  flattened  and
projected  through  separate  fully  connected  layers  into
three essential vectors: Query, Key, and Value. The simi-
larity or correlation between Query and Key is  comput-
ed  using  the  inner  product,  yielding  weight  coefficients
for  each  Key  corresponding  to  its  associated  Value,
known  as  cross-pixel  attention.  The  Value  is  then
weighted and aggregated based on attention coefficients
to  obtain  enhanced  features.  Corresponding  attention
calculation equation49 is 

Attention (Q,K,V) = softmax
(
QKT
√
dk

)
V , (2)

 

softmax (xi) =
exi∑n

j=1
exj

, (3)

Q K V√
dk

where  is  the  Query  vector,  is  the  Key  vector,  is
the Value vector,  serves as a scale to control the re-

dk
softmax

sult range,  is the dimension of Query vector and Key
vector,  and  is  a  normalization function utilized
to transform a vector of numerical values into a vector of
probability  distributions.  This  transformation  ensures
that the probability associated with each value is directly
proportional  to  its  relative  proportion  within  the  origi-
nal vector.

Cross-view interaction refers  to  the  interaction or  in-
tegration of information from multiple views or perspec-
tives. In multi-view analysis, cross-view interaction aims
to  leverage  information  from  different  viewpoints  or
modalities to enhance the overall understanding or inter-
pretation of  the  scene.  Detailed processing steps  are  de-
picted in Fig. 3(c), which is similar to cross-pixel interac-
tion.  The difference  is  that  the  calculation of  cross-view
attention  is  based  on  the  Query  and  Key  from different
features. Specifically, the Query of the left feature map is
computed with the Key of the right feature map through
inner  product  and  vice  versa.  This  interaction  involves
feature  matching  and  data  fusion,  allowing  the  align-
ment  and  combination  of  information  from  different
views.  The  attention  mechanism  enhances  the  model's
ability to capture dependencies,  focus on relevant infor-
mation, and leverage contextual relationships within the
visual data (see the ablation study details in Supplemen-
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timation. A disparity regression module is performed before the final disparity map prediction. (b) Detailed pipelines of the cross-pixel interaction.

The left and right feature maps are flattened and processed through separate fully connected layers to generate Query, Key, and Value vectors.

The inner product is utilized to compute the similarity between Query and Key, resulting in weight coefficients for each Key. These coefficients

are used for cross-pixel attention, associating each Key with its corresponding Value. The weighted Values are aggregated to produce enhanced

features. (c) Detailed pipelines of the cross-view interaction. The difference from the cross-pixel interaction is the inner product of Key and Query
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D = {da}Amax
a=0 d̂a

da

tary  information  Section  5.4  Ablation  study).  The  en-
hanced  left  and  right  feature  maps  from  H-Module  are
concatenated  as  a  4D  cost  volume.  Three  repeated  en-
coder-decoder  architectures  are  utilized in  the  3D CNN
module to further comprehensively understand the con-
textual  information.  Before  the  final  prediction  of  the
disparity map, a disparity regression50 is performed with
a  soft  attention  mechanism.  For  the  disparity  map

, each final disparity value  is the original
depth value  weighted by its probability. The disparity
regression is performed as the equation below 

d̂a =
Amax∑
a=0

da · softmax (−ca) , (4)

d̂a ca
da a

da D Amax

a softmax

where  is  the final  predicted disparity,  is  the corre-
sponding cost from cost volume for each disparity , 
is  the annotation number associated with each disparity
value  in disparity map ,  is the maximum value
of  within the range of annotations,  function is
discussed in Eq. (3). We adopt the smooth L1 loss as the
loss  function  for  its  fast  convergence  and  robustness  to
outliers.  The  final  loss  is  averaged  over  the  N-pixel  dis-
parity map, as shown in Eq. (5). 

Loss
(
D, D̂

)
=

1
N

N∑
n

smoothL1
(
dn − d̂n

)
, (5)

in which 

smoothL1 (x) =

{
0.5x2, if |x| < 1

|x| − 0.5, otherwise
, (6)

D D̂
N

dn
n d̂n n

β1 = 0.9
β2 = 0.999

where  is the ground truth disparity map,  is the pre-
dicted  disparity  map,  is  the  number  of  pixels  in  the
disparity  map,  is  the  ground  truth  disparity  data  for
pixel , and  is the predicted disparity data for pixel .
H-net  was  trained  on  the  stereo  vision  dataset  KITTI
201251.  We  employed  the  Adam  Optimizer  ( ,

).  The learning rate was 0.001 for the first  10
epochs and 0.0001 for the rest. The batch size was 3 on a
Nvidia  GeForce  RTX 3090 GPU.  After  800  epochs
(64,000 iterations) of training, the final model converged
with  a  training  loss  of  approximately  0.3  (see  details  in
Supporting Information Fig. S8).

The  depth  map  is  calculated  based  on  the  predicted
disparity map. The depth calculation formula3 is 

depth =
fb

ps ·
∣∣∣D̂+ Uoffs + Ooffs

∣∣∣ , (7)

in which 

Ooffs =
b
ps

− |x1 − x0| , (8)

f b

ps
Uoffs

Ooffs

x0 = 1232,
x1 = 2789

where  focal  length  is  10  mm,  baseline  is  measured
4.056 mm, the side length of the physical pixel on CMOS
sensor  is 3.45 μm, misalignment of lens and sensor on
the x-axis  is 0, the principal point offset along the x-
axis  is  calculated as -396.6 pixels  with x coordinate
of  left  image  center  and  the x coordinate  of
the  right  image  center  (see  more  details  in
Supplementary  information Fig.  S3).  The  edge  image  is
derived from the raw captured stereo image with a Can-
ny  edge  detector52,  which  approximates  the  first  deriva-
tive  of  a  Gaussian  operator.  Through  the  lower  bound
cut-off  suppression  and  edge  tracking  by  hysteresis,  the
detected edges are constrained to be one pixel  wide and
located  at  the  center  discontinuous  area  without  false
noise  edge  points.  There  are  no  edges  in  the  non-tex-
tured regions in images with uniform intensity distribu-
tion. These ill-posed regions will cause ambiguous depth
prediction  because  of  the  feature-matching  calculation
mechanism. Under the guidance of the edge image, these
ill-posed  regions  on  the  depth  map  are  discarded.  The
edge-enhanced  depth  perception  is  the  depth  map  fil-
tered  by  logical  conjunction  (AND)  operations  on  edge
images. Both the discontinuity of intensity and depth are
preserved with high fidelity and accuracy.

 Results and discussion
The  optical  performance  of  the  fabricated  meta-lens  is
derived  under  532  nm  illumination.  The  measured  in-
tensity  profile  of  left  and  right  meta-lenses  along  the
propagation direction is  presented in Fig. 4(a).  The cor-
responding  measured  focal  lengths  of  left  and  right
meta-lenses  are  10.048  mm  and  10.046  mm,  which
matches the designed focal length of 10.0 mm. The diam-
eter  of  a  single  meta-lens  is  2.6  mm,  and  the  metalens'
numerical  aperture  (NA)  is  about  0.13.  The  measured
full-width at  half-maximum (FWHM) of  the focal  spots
of  both  meta-lens  along X-  and Y-axes  range  from 2.21
to 2.36 μm, with the minimum measurement accuracy of
0.2809 μm per division. Therefore, the averaged FWHM
is 2.26 ± 0.14 μm, which is close to the diffraction-limit-
ed  system  with  an  FWHM  of  2.1  μm  (FWHM  =
0.514λ/NA).  The  modulation  transfer  function  (MTF),
the Fourier transform of the point spread function (PSF),
was also calculated, which further confirms that the fab-
ricated  meta-lens  is  a  diffraction-limited  lens  (see  more

Liu XY et al. Opto-Electron Sci  3, 230033 (2024) https://doi.org/10.29026/oes.2024.230033

230033-6

 

https://doi.org/10.29026/oes.2023.230033
https://doi.org/10.29026/oes.2024.230033


details  in  Supporting  Information Fig.  S4).  The
measured  focusing  efficiency  is  73.86%  at  the  working
wavelength  of  532  nm.  The  focusing  efficiency  is  calcu-
lated by dividing the total  light power of the focal  point
area  at  the  focal  plane  by  the  total  input  light  power  of
the  bare  substrate  surface  (the  selected  area  is  equal  to
the size of the meta-lens). Several experiments were per-
formed  to  characterize  the  2.6  mm  meta-lens  using  a
commercial  measurement  system  (AR-Meta-P,
IDEAOPTICS INC.). The phase profile of the fabricated
meta-lens  was  measured  to  check  the  agreement  be-
tween  the  calculated  phase  profile  and  the  fabricated
phase profile. The detailed experimental setup for meta-
lens phase measurement was demonstrated in our previ-
ous work53. The simulated and experimental phase distri-
bution  maps  at  the  central  region  of  the  meta-lens  are
depicted in Fig. 4(b) and 4(c),  respectively,  which are in
good  agreement  with  each  other.  The  small  disparities
can be attributed to the fabrication defects and the spher-
ical  aberrations in the measurement system. More theo-
retical  and  the  measured  phase  profile  comparison  re-

sults are depicted in Supporting Information Fig. S5.

Iraw

D̂epth

Eb

DE
D̂epth

Various  imaging  and  depth  sensing  experiments  are
conducted  to  test  the  performance  of  edge-enhanced
depth perception of our binocular meta-lens. The config-
uration of the binocular meta-lens camera for imaging is
shown in Fig. S7 in the Supporting Information. Figure 5
demonstrates the raw captured images, depth sensing re-
sults, edge-enhanced depth maps, and the integration re-
sults of raw images and 3D edges. The raw captured im-
age  is  cropped  from  the  common  stereoscopic  re-
gion  of  the  left  image.  Proposed  H-Net  outputs  corre-
sponding  disparity  map  of  the  stereo  images.  Through
Eq. (5), the depth map  is calculated accordingly and
illustrated  in  pseudocolor,  as  shown  in  the  second  col-
umn  of Fig. 5.  The  2D  edge  images  that  represent  the
spatial  intensity  discontinuity  are  derived  from  the  raw
captured image (first  column) with the Canny operator.
The 2D edge image is converted into a binary matrix ,
in which the edge pixel is  1,  otherwise it  is  0.  The edge-
enhanced depth map  is calculated by the Hadamard
product of the depth map  and the binary edge ma-
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measured focal lengths of left and right meta-lenses are 10.048 mm and 10.046 mm, respectively, which are denoted by yellow dashed lines. (b)

Designed phase distribution of the meta-lens. (c) Corresponding measured phase distribution of the meta-lens in (b).
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Ebtrix ,  which is  similar  to a  logical  conjunction (AND)
operation. The specific calculation equation is
 

DE = D̂epth ⊙ Eb . (9)

DE

Iinteg

The  edge-enhanced  depth  maps  are  displayed  in
the third column of Fig. 5 in pseudocolor. The non-edge
regions with 0 values are set to be black. The integration
images  in  the  fourth  column  of Fig. 5 are  merged
using the following expression:
 

Iinteg = 1.2DE+ 0.8Iraw . (10)

The integration images aim to demonstrate the fideli-
ty of edge-enhanced depth perception in spatial  intensi-
ty and depth discontinuity detection.

Figure 5(a) depicts  a  scenario  with  ill-posed  regions.
Two black letter objects, "RIKEN" and "CITYU," printed
on transparent  plastic  papers,  are  positioned at  16.0  cm
and 12.8  cm,  respectively.  The  letter  carrier  is  transpar-
ent  plastic  paper.  The  background  is  a  white  wall  with-
out any texture. The absence of texture makes it difficult
to  establish  reliable  correspondences  between  image
points in the left and right views, leading to unreliable or
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Fig. 5 | Edge-enhanced depth perception of various objects. The first column is the raw left image. The second column is the corresponding

depth map. The third column is the edge-enhanced depth map. The second and third columns use the same color bar on the right of the third col-

umn. The fourth column is the integration image of the raw image and edge-enhanced depth map. (a) Two pieces of transparent plastic paper

printed with "RIKEN" and "CITYU" in black letters are placed at 16.0 cm and 12.8 cm, respectively. (b) A piece of sketch paper printed with a tilt-

ed three-dimensional building is located at 17.3 cm as the background. The front ends of the two toy cars are approximately 12.9 cm and 15.7

cm, respectively. (c) The two architectural sketches are at 13.5 cm and 16.5 cm, respectively. (d) The background architecture sketch is posi-

tioned at 17.3 cm. The depth of a toy car's body ranges from 12.5 cm to 15.5 cm.
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ambiguous depth estimates (see the middle region of the
depth  map  in Fig. 5(a).  Such  unreliable  and  ambiguous
depth  estimates  will  cause  severe  trouble  for  decision-
making  tasks.  In  edge-enhanced  depth  perception,  the
3D edge  data  agree  well  with  the  ground truth  with  the
completed  preservation  of  essential  details  of  the  scene.
Figure 5(b) demonstrates  a  multi-object  traffic  scene
with two toy cars located at about 12.9 cm and 15.7 cm.
An architecture sketch background providing is placed at
17.3  cm. Figure 5(c) shows  two  architecture  sketches
with false 3D feelings positioned at 13.5 cm and 16.5 cm,
respectively.  With  edge-enhanced  depth  perception,  the
planar false 3D objects do not deceive the system. Figure
5(d) displays  a  toy  car  with  a  continuous  depth change,
ranging  from 12.5  cm to  15.5  cm.  All  depth  sensing  re-
sults  are  correct,  demonstrating  the  accuracy  capability
of  our  H-Net.  The  edge-enhanced  depth  results  discard
all  uniform  regions  and  amplify  the  3D  feature  details
with high confidence.

 Conclusions
Spatial  computing  has  attracted  growing  attention  from
both academia  and industry,  driven by  the  rising  popu-
larity of the metaverse. A portable and accurate imaging
and depth sensing system is of vital importance for next-
generation  virtual  reality  devices.  In  this  work,  we
demonstrate an edge-enhanced depth perception system
based  on  binocular  meta-lens,  which  is  intelligent,
lightweight,  and  compact  for  spatial  computing.  The
miniaturized  system  contains  a  binocular  meta-lens,  a
532 nm filter, and a CMOS sensor. The binocular meta-
lens  only  weighs  about  0.115  g  with 0.0288 cm3 volume
consumption.  The  imaging  system  based  on  our  meta-
lens minimizes the discomfort caused by the weight and
volume  of  wearable  devices  to  users.  We  propose  a
stereo-matching neural network with a novel H-Module
for  the  disparity  computation.  The  H-Module  intro-
duces  the  attention  mechanism  into  the  Siamese  net-
work. The symmetric architecture with cross-pixel inter-
action  and  cross-view  interaction  enables  a  more  com-
prehensive  analysis  of  the  contextual  information  in
stereo images. The edge enhancement based on the spa-
tial  intensity discontinuity discards the ill-posed regions
in the image, where ambiguous depth prediction will  be
generated  due  to  the  lack  of  texture  information.  With
the  support  of  deep  learning,  our  edge-enhanced  pro-
vides a prompt, intelligent response in less than 0.15 sec-
onds.  This  edge-enhanced  depth  perception  system  will

facilitate accurate 3D scene modeling to promote the de-
velopment  of  machine  vision,  autonomous  driving,  and
robotics.
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  Section 1: Design and fabrication of the binocular meta-lens

  Section 2: Characterization of binocular meta-lens
The depth resolution and accuracy are related to the object depth itself, as shown in Fig. S3(b). The closer the object is to
the meta-lens, the higher the depth resolution and accuracy will be. In the expected distance range to be measured, the
smaller the slope of the data curve is, the higher the spatial resolution is. For example, for a distance below 100 mm, if
the distance changes slightly, the disparity is changed significantly. The yellow curve line is the theoretical value, and the
violet point is the experimental value. The measured results agree well with the theoretical results.

The highest accuracy of our meta-lens system is determined by Eq. (S1). 

acc = fb
ps

(
1

Ooffs − 1
− 1

Ooffs

)
, (S1)

f b
ps Ooffs

where focal length  is 10 mm, baseline  is measured 4.056 mm, the side length of the physical pixel on CMOS sensor
 is 3.45 μm, the principal point offset along the x-axis  is calculated as -396.6 pixels for the experiment demonstra-

tion depth working range. Under this configuration, the highest accuracy can reach 74.5 um.
For the working range of 60 to 450 mm in the experimental demonstration of our work, we did a series of scanning

measurement experiments to evaluate its depth resolution. A textured pattern was attached to the surface of a flat board.
The flat board moved from a distance of 60 mm to 450 mm in 10 mm steps. The distance refers to the separation length
between the  binocular  meta-lens  and the  flat  board.  We captured images  every  time the  flatboard moved.  We did  10
groups of such scanning measurements for statistical analysis. The measurement results, as depicted in Fig. S4, demon-
strate strong agreement between the measured distances and the corresponding ground truth values. Fig. S4(a) show-
cases the excellent alignment between the measured distances and ground truths, with minimal error bars indicating the
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absence of crosstalk between measurements. Notably, both the negative error bars in Fig. S4(b) and positive error bars
in Fig. S4(c) generally remain below 1 mm. The presence of two outliers can be attributed primarily to errors within the
measurement system. As a result, we can confidently conclude that a depth resolution of 1 mm can be reliably achieved
within the range of 60 to 450 mm.
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Due  to  the  limitation  of  our  experimental  room  size,  we  discuss  the  depth  resolution  at  longer  working  distances
through computation. 

depth =
fb

ps ·
∣∣∣D̂+ Uoffs + Ooffs

∣∣∣ , (S2)

Ooffs Odiff < 0 D̂ < |Odiff|In the depth calculation Eq. (S2),  in our system is 0,  and . Therefore, Eq. (S2) could be simpli-
fied as 

depth = − fb

ps ∗
(
D̂+ Ooffs

) , (S3)

Δdepth Δdisp
Δdisp

Δdisp

The depth resolution is related to the object’s depth itself. The closer the object is, the higher the depth resolution of the
system is. The uncertainty of the depth perception  is related to the disparity vibration . The disparity vi-
bration  is determined by the disparity computation algorithm and the texture of the object. Normally, the dispar-
ity vibration  is at the subpixel level because the disparity computation algorithms will take global context charac-
teristics into account. 

Δdepth = − fb
ps

(
1

D̂+ Δdisp+ Ooffs
− 1

D̂+ Ooffs

)
, (S4)

D̂According to Eq. (S3),  could be expressed as 

D̂ = − fb
ps ∗ depth

− Ooffs , (S5)

Putting Eq. (S5) into Eq. (S4), we can derive the depth resolution at different depths, 

Δdepth =
A ∗ depth2

1− A ∗ depth
,whereA =

ps ∗ Δdisp
fb

, (S6)

f b
f b

The  above  discussion  is  based  on  the  object  distance  being  large  (far  to  meta-lens).  In  other  words,  the  distance
between the meta-lens and sensor could be approximated as focal length. In practical applications, the design paramet-
ers of binocular meta-lens, namely the focal length  and baseline , can be adjusted based on the actual working dis-
tance, range, and required accuracy. The focal length  and the baseline  play vital roles in determining the depth sens-
ing accuracy.

The spatial resolution of the lens is usually described by Modulation Transfer Function (MTF). It quantifies the abil-
ity of a lens system to transmit details at different spatial frequencies, i.e., how many image details a lens can retain and
reproduce. The modulation is typically measured by imaging the object of periodic bright and dark line pairs. The spe-
cific calculation of modulation is defined as 

M =
Imax − Imin

Imax + Imin
, (S7)

Imax Iminwhere  is the maximum intensity value in the captured image, representing the bright (white) line;  is the minim-
um intensity value in the captured image, representing the dark (black) line. MTF reflects the image contrast over differ-
ent spatial frequencies. Spatial frequency can be described by the number of line pair periods contained within one mil-
limeter in  the  image.  The  number  of  cycles  contained in  each  millimeter  on the  image  plane  is  called  the  spatial  fre-
quency. Fig. S5(e) demonstrates the measured MTF of our binocular meta-lens. The black dashed line in Fig. S5(e) is the
diffraction-limited transfer function. The diffraction limit represents the spatial resolution of the ideal image. The MTF
will decrease as the spatial resolution increases. The diffraction limit is calculated as shown in Eq. (S8-S10). 

MTF (ξ) = 2
π
(ϕ− cosϕ · sinϕ) , (S8)

 

ϕ = arccos
(
ξ
ξc

)
, (S9)
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ξc =
1

λ · N
, (S10)

ξ ξc λ

N N =
f
D

f = 10 mm

D = 2.6 mm ξc

where  is  the  spatial  frequency,  is  the  limit  frequency  (MTF cut-off),  is  the  working  wavelength  of  the  incident

light,  is  the  f-number  given  by .  For  our  binocular  meta-lens  with  focal  length  and  diameter

,  the  f-number  is  3.846.  Corresponding  limit  spatial  frequency  is  489  cycles/mm  under  the  working
wavelength  of  532  nm.  The  measured  modulation  transfer  function  (MTF)  of  our  meta-lens  (represented  by  the  red
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solid line in Fig. S5(e)) closely approximates the diffraction limit (indicated by the black dashed line in Fig. S5(e)). This
suggests that the spatial resolution of our meta-lens approaches the level of ideal image quality. Our meta-lens exhibits a
notable capability of delivering high image contrast across a wide range of spatial frequencies.

  Section 3: Configuration of the binocular meta-lens camera

  Section 4: Cross-pixel and cross-view interactions
Cross-pixel  interaction,  also  known as  spatial  interaction,  is  the  mutual  interaction or  influence between neighboring
pixels in an image or visual representation. It involves considering the relationships and dependencies between pixels to
capture  contextual  information  and  improve  the  understanding  or  analysis  of  the  image.  Cross-pixel  interactions  are
important for computer vision tasks, such as stereo matching, which strongly relies on image features. The convolution
operation in convolutional neural networks (CNN) is a kind of typical cross-pixel interaction.S1 CNN applies kernels to
local patches of the input image. The convolutional operation can be represented mathematically as follows:
 

C (x, y) = k ∗ I (x, y) =
l∑

i=−l

l∑
j=−l

k (i, j) I (x− i, y− j) , (S11)

C (x, y) (x, y) k (2l+ 1, 2l+ 1)
k (i, j) (i, j) I (x− i, y− j)
(x− i, y− j)

I = {Iij}2l+1
i,j=1 2l+ 1

where  represents the convolution output at the position ,  is the kernel with a dimension of ,
 represents the kernel value at position ,  represents the input image pixel at the relative position

. This operation allows the network to learn spatial patterns and dependencies between neighboring pixels.
However, the receptive field  in CNN is limited by the kernel size S2. Traditional CNNs capture local
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relationships through convolutional kernels, but they may struggle to model long-range dependencies between distant
pixels in an image.

l∑
i=−l

l∑
j=−l

I (x− i, y− j)

I = {Iij}Pi,j=1 P ≫ 2l+ 1

One of the key challenges in stereo matching is dealing with the ill-posed regions caused by the presence of texture-
less or repetitive regions in the images. The convolution operation yields local features from small image patches in loc-

al  neighborhood ,  facilitating  the  establishment  of  initial  feature  maps.  However,  in  scenarios

where textureless or repetitive regions are present, a broader context , where , is necessary, and
thus global features come into play. In stereo matching, the extraction of global features entails capturing dependencies
between pixels that may not be spatially adjacent. To incorporate contextual information and enable global feature ex-
traction, we introduce the self-attention mechanismS3 within the cross-pixel interaction module.

M× N
P = {pi}M×N

i=1 M N pi
Q K V

Self-attention provides a solution to this problem by allowing each pixel to attend to other pixels in the image, which
may  not  be  spatially  neighbored.  In  specific  operation,  we  flattened  the  feature  map  to  a  sequence  of  pixels

, where  and  are the height and width of the feature map. For each pixel , we project it into three es-
sential vectors, Query , Key , and Value , through respective fully connected layers. These linear transformations
from fully connected layers map the original pixel representations into higher-dimensional spaces, allowing the model
to capture complex cross-pixel relationships and potential contextual information. Self-attention enables the cross-pixel
interaction module to compute a weighted sum of the pixel representations, where the weights are determined based on
the relevancy or importance of each pixel to the others. Corresponding attention calculation equationsS3 are 

Attention (Q,K,V) = softmax
(
QKT

√
dk

)
V , (S12)

 

softmax (xi) =
exi∑n
j=1exj

, (S13)

Q K V
√
dk

dk softmax

√
dk softmax

softmax

where  is the Query vector,  is the Key vector,  is the Value vector,  serves as a scale to control the result range,
 is the dimension of the Query vector and Key vector, and  is a normalization function utilized to transform a

vector of  numerical  values into a  vector of  probability  distributions.  The similarity  or  correlation between Query and
Key  is  computed  using  the  inner  product,  yielding  weight  coefficients  for  each  Key  corresponding  to  its  associated
Value, known as cross-pixel attention. The dot products are then scaled by a factor of the square root of the dimension

 to prevent large values. The resulting dot products are passed through a  function to obtain the cross-pixel
attention, which indicates the importance of each pixel for the given Query. This  transformation ensures that
the probability associated with each value is  directly proportional  to its  relative proportion within the original  vector.
The Value is then weighted and aggregated based on cross-pixel attention to obtain enhanced features.  This weighted
sum represents the cross-pixel interaction or the aggregated information from the other pixels. The output of the self-at-
tention mechanism for each pixel is a new representation that combines information from both local and distant pixels,
allowing the model to capture long-range dependencies. Self-attention enables cross-pixel interactions by allowing each
pixel to attend to other pixels in the image. By calculating cross-pixel attention weights based on the relevancy of each
pixel, the model can aggregate information from all pixels to generate a new representation that captures both local and
long-range dependencies.

Pl =
{
pl i
}M×N
i=1 Pr =

{
pri
}M×N
i=1

Ql Kr

In stereo matching, the goal is to determine the correspondence between pixels in a pair of stereo images, which al-
lows for the estimation of disparity information. Therefore, a strong relationship and correspondence exist between the
pixels in the left view, denoted as , and the right view, denoted as . Cross-view interaction
refers to the process of integrating or exchanging information between the left and right stereo views. In binocular-view
analysis,  our cross-view interaction aims to leverage information from stereo viewpoints or modalities to enhance the
overall understanding or interpretation of the scene. Detailed processing steps are similar to the cross-pixel interaction.
The distinction lies in the calculation of cross-view attention, which is based on the Query and Key derived from differ-
ent views. Specifically, the Query of the left feature map  is computed with the Key of the right feature map  through
inner product and vice versa, as described in Eq. (S14) and (S15). 
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Attention_left (Qr,Kl,Vl) = softmax
(
QrKT

l√
dk

)
Vl , (S14)

 

Attention_right (Ql,Kr,Vr) = softmax
(
QlKT

r√
dk

)
Vr , (S15)

Ql Kl Vl Qr Kr Vrwhere , ,  are the three essential vectors, Query, Key, and Value, projected from the left feature map; , ,  are
the three essential vectors, Query, Key, and Value, projected from the right feature map. The inner products of Query
and Key vectors from different views indicate the significance or correspondence of each pixel in the current view re-
garding the given Query from the other view. This cross-view interaction involves feature matching and data fusion, al-
lowing the alignment and combination of information from stereo views. The cross-attention mechanism enhances the
model's ability to capture dependencies between the stereo views, focus on relevant information, and leverage contextu-
al relationships within the visual data.

  Section 5: Performance evaluation of H-Net

 5.1 Network convergence
We trained the H-Net for 800 epochs,  with each epoch consisting of  80 iterations,  resulting in a total  of  64,000 itera-
tions.  We  have  carefully  analyzed  the  training  process  and  plotted  the  training  loss  curve  based  on  the  iterations,  as
shown in Figure S8. The graph clearly shows the trend of the training loss decreasing over time, indicating the conver-
gence of our model during the training process. Starting from an initial training loss of 113, we observed a significant re-
duction in the loss as the training progressed. The training loss steadily decreased and eventually converged to around
0.3.

 5.2 Evaluation metrics

Ddiff(D, D̂) =
{
dispdiffn

}Ntotal

n=1

We use the percentage of the three-pixel-error, the percentage of the one-pixel-error, the end-point error, and runtime
to evaluate the network performance. The percentage of the three-pixel-error displays the percentage of predicted dis-
parity pixels whose absolute difference from the ground-truth disparity value is greater than 3. The absolute difference
map  is specifically calculated by Eq. (S16).
 

dispdiffn =
∣∣∣dn − d̂n

∣∣∣ , (S16)

The percentage of three-pixel-error is further calculated as shown in Eq. (S17).
 

ThreePixelErr
(
D, D̂

)
=

Ndispdiff>3

Ntotal
× 100% , (S17)

D D̂ dispdiffn
n Ntotal D D̂

Ddiff dn n d̂n n Ndispdiff>3

dispdiffn Ndispdiff>1

where  is the ground truth disparity map,  is the predicted disparity map,  is the absolute difference between
ground truth and predicted disparity value for pixel ,  is the total number of pixels in the disparity map  (and ,
and ),  is the ground truth disparity data for pixel , and  is the predicted disparity data for pixel ,  is
the number of pixels whose  is greater than 3. For one-pixel-error, the number of pixels to be counted  is
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Fig. S8 | The training loss curve of H-Net based on iterations.
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dispdiffnthe number of pixels whose  is greater than 1.
End-point error is the mean absolute difference for all pixels between the estimated and ground-truth disparity maps.

The specific calculation is demonstrated in Eq. (S18). 

EndPointErr
(
D, D̂

)
=

1
Ntotal

Ntotal∑
n

(
dn − d̂n

)
, (S18)

 5.3 Performance improvement evaluation
To quantify the improvements of our H-Net, we compare it with the conventional block matching algorithm and two
advanced  neural  network  methods,  PSMNetS4 and  UnimatchS5,  on  the  disparity  computation  accuracy  on  our
homemade test  set  derived from our  meta-lens  system.  In  this  comparison,  PSMNet  and Unimatch all  use  the  open-
source trained weights provided by their authors. Our H-Net and PSMNet were all trained on the KITTI 2012 dataset.
Because the performance of Unimatch trained on KITTI is  relatively poor,  we additionally compared its  performance
based on the Middlebury dataset (its best performance).
 1) Test set preparation

The test  set  on meta-lens  contains  31 stereo image pairs  with 31 ground-truth disparity  maps.  The specific  experi-
mental setup of the test set collection is demonstrated in Fig. S9(a). A textured pattern (as shown in Fig. S9(b)) was at-
tached to the surface of a flat board. The flat board moved from a distance of 150 mm to 450 mm in 10 mm steps. In the
range of 150 to 450 mm, objects can be clearly imaged, minimizing the adverse effects of imaging quality problems such
as  defocusing  on  the  test.  The  distance  refers  to  the  separation  length  between  the  binocular  meta-lens  and  the  flat
board. We captured images every time the flatboard moved. For each image, all the disparity values in its disparity map
are the same because the imaging object is a uniform surface with the same depth. Therefore, we derive 31 stereo (left
and right) image pairs with different depth-disparity pairs.  The ground truth disparity map is derived from the depth
calculation formula Eq. (S19). 

depth =
fb

ps ·
∣∣∣D̂+ Uoffs + Ooffs

∣∣∣ . (S19)

Uoffs Ooffs < 0 D̂ < |Ooffs|In the depth calculation Eq. (S19),  in our system is 0,  and . Therefore, Eq. (S19) could be sim-
plified as Eq. (S20). 

depth = − fb

ps ∗
(
D̂+ Ooffs

) , (S20)

D̂Therefore,  could be expressed as Eq. (S21). 

D̂ = − fb
ps ∗ depth

− Ooffs , (S21)

Through Eq. (S21), we could obtain the computational ground truth disparity data for each depth in the range of 150
to 450 mm, as displayed in Fig. S9(c).  The computational disparity data were further validated by manual calibration.
For each image in the test set, the corresponding feature point pixels are found manually, and their corresponding pixel
displacements are consistent with the calculated ground truth disparity data.
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 2) Comparison analysis
As presented in Table S1, our H-Net demonstrates superior performance compared to other methods across three eval-
uation metrics, including 1PE, 3PE, and EPE, over the entire test dataset. Generally, the 3PE metric is widely employed
to assess the effectiveness of stereo-matching algorithms. We additionally employ the 1PE metric to further evaluate the
algorithm's accuracy and robustness. Our method achieves an outstanding 1PE of 18.839%, surpassing that of other al-
gorithms. This outcome substantiates the significant accuracy improvements brought about by the incorporation of the
H-Module in the calculation of disparities.
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Table S1 | Evaluation of different methods on the test set derived from our meta-lens system. We use the percentage of the three-pixel-er-

ror (3PE), the percentage of the one-pixel-error (1PE), the end-point error (EPE), and runtime for total test set evaluation. The results for the ob-

jects at 250 mm, 350 mm, and 450 mm are specifically listed for item comparison. All the results are tested on the Nvidia GeForce RTX 3090

GPU.
 

Method

Test Set on Meta-Lens

Runtime (s)
250 mm 350 mm 450 mm Total

3PE
(%)

EPE
3PE
(%)

EPE
3PE
(%)

EPE
1PE
(%)

3PE
(%)

EPE

Conventional
Block Matching

0.088 0.690 0.040 0.741 0.0 0.805 36.886 0.181 0.877 ~200

PSMNet 0.0 0.713 0.798 1.135 3.215 2.024 53.564 2.128 1.176 0.144
Unimatch (Middlebury) 0.126 1.269 0.201 1.133 1.392 1.579 75.904 2.902 1.604 0.503

Unimatch (KITTI) 61.951 6.769 51.384 4.894 60.566 6.474 84.622 58.694 6.455 0.503

Ours (H-Net) 0.0 0.630 0.170 0.734 0.0 0.521 18.839 0.062 0.620 0.147
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Regarding runtime, H-Net exhibits comparable performance to the fastest PSMNet, with a mere 0.003 s difference in
execution time.  Considering that the introduction of  the H-Module introduces additional  parameters,  it  is  reasonable
for  our  algorithm  to  exhibit  slightly  slower  performance.  In  contrast,  the  conventional  method  exhibits  the  longest
runtime due to the trial-and-error hyperparameter selection process.

When comparing results for objects captured at distances of 250 mm, 350 mm, and 450 mm, our methods consist-
ently  outperform other  approaches,  except  for  a  slightly  inferior  3PE at  350 mm compared to the conventional  block
matching algorithm. However, the smaller EPE at 350 mm provides evidence of the enhanced robustness of our meth-
od compared to the conventional algorithm.

Figure S10 illustrates a comparative analysis of the disparity map computation results for objects located at distances
of 250 mm, 350 mm, and 450 mm within the test set. Specifically, Fig. S10(a) showcases the original left image captured
by  our  meta-lens. Figure S10(b-f) present  the  corresponding  disparity  maps  obtained  from  the  conventional  block
matching algorithm,  PSMNet,  Unimatch trained on the  Middlebury  dataset,  Unimatch trained on the  KITTI dataset,
and our H-Net. Figure S10(g) represents the ground truth. Certain irregularities can be observed in the 250mm and 350
mm results generated by the conventional algorithm, as shown in Fig. S10(a). With the exception of Unimatch trained
on  the  KITTI  dataset,  as  depicted  in Fig.  10(e),  the  outcomes  from  the  other  methods  closely  align  with  the  ground
truth. Our method provides better results with more uniform disparity distribution, especially in the 450 mm item.

 5.4 Ablation study
We  conducted  the  ablation  experiments  with  and  without  H-Modules  to  evaluate  H-Net.  The  default  backbone  of
PSMNetS4 was the basic architecture. We trained the H-Net and baseline on the stereo dataset KITTI 2012, which con-
tains 194 training stereo image pairs with sparse ground-truth disparities obtained using LiDAR and 195 testing image
pairs without ground-truth disparities. We further divided the whole training data into a training set (160 image pairs)
and a validation set (34 image pairs). As our binocular meta-lens works under a single wavelength, the captured image is
monochromatic. Therefore, the grayscale images of KITTI 2012 were adopted in model training. We use the percentage
of the three-pixel-error and end-point error to evaluate the network performance.

As  listed  in Table S2,  H-Net  outperformed  the  baseline  in  both  two  quantitative  indicators.  In  the  baseline  model
(without the introduced ablation module), the Three Pixel Error is reported as 2.324%, and the End Point Error is 0.150.
These  metrics  reflect  the  performance  of  the  baseline  model  on  the  KITTI  2012  dataset.  After  introducing  the
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H-Module, the Three Pixel Error decreases to 1.258%, and the End Point Error decreases to 0.109. This reduction indic-
ates that the incorporation of the H-Module has a positive impact on the model's performance, resulting in improved
accuracy of the disparity map.

The ablation experiment involving the H-Module demonstrates a significant improvement in the performance of the
disparity estimation task on the KITTI 2012 dataset. The decrease in "Three Pixel Error" and "End Point Error" signifies
enhanced  accuracy  and  precision  of  the  disparity  map.  These  results  validate  the  effectiveness  of  the  H-Module  and
provide proof that the H-Module can capture contextual dependencies and enhance the understanding or analysis of the
image.
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