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Abstract: In this work, we present the possibility of producing multiscale hierarchical
micro/nanostructures by the femtosecond laser ablation of transition metals (i.e., Ta and W) in
water and investigate their polarization-dependent reflectance. The hierarchical micro/nanostructures
are composed of microscale-grooved, mountain-like and pit-rich structures decorated with hybrid
laser-induced periodic surface structures (LIPSSs). The hybrid LIPSSs consist of low/high and ultrahigh
spatial frequency LIPSSs (LSFLs/HSFLs and UHSFLs). LSFLs/HSFLs of 400–600 nm in a period are
typically oriented perpendicular to the direction of the laser polarization, while UHSFLs (widths:
10–20 nm and periods: 30–50 nm) are oriented perpendicular to the curvatures of LSFLs/HSFLs.
On the microstructures with height gradients, the orientations of LSFLs/HSFLs are misaligned by
18◦. On the ablated W metasurface, two kinds of UHSFLs are observed. UHSFLs become parallel
nanowires in the deep troughs of LSFLs/HSFLs but result in being very chaotic in shallow LSFLs,
turning into polygonal nanonetworks. In contrast, chaotic USFLs are not found on the ablated Ta
metasurfaces. With the help of Fourier transform infrared spectroscopy, it is found that microgrooves
show an obvious polarization-dependent reflectance at wavelengths of 15 and 17.5 µm associated
with the direction of the groove, and the integration of microstructures with LSFs/HSFLs/UHSFLs
is thus beneficial for enhancing the light absorbance and light trapping in the near-to-mid-infrared
(NIR-MIR) range.

Keywords: laser ablation in liquid; femtosecond laser; LIPSS; polarization dependent reflectance;
hybrid LSFL/UHSFL nanostructure

1. Introduction

Femtosecond laser ablation (fs-LA) is a versatile technique that enables the production of a large
variety of surface structures [1–5], and the structures’ diversity can be further enriched in combination
with other techniques [6,7]. Laser-induced periodic surface structures (LIPSSs) [1,8–13] are the most
typical nanoscale structures that are uniquely achievable by fs-LA, whose periods can be manipulated
from tens of nm to hundreds of nm by changing the laser properties [14], processing parameters [8]
and ablation environments [15]. Generally, LIPSSs are categorized into low and high spatial frequency
LIPSSs (LSFL/HSFL) according to the ratio of LIPSS periods (Λ) to the fs laser wavelength (λ) [8].
The periods of LSFLs and HSFLs are defined as ranging from about the wavelength to half of the laser
wavelength (λ/2 ≤ ΛLSFL ≤ λ) and less than half of the wavelength (ΛHSFL < λ/2), respectively [8,16].
Recently, our group has shown the necessity to define sub-100 nm [17–20] periods as a new category

Nanomaterials 2020, 10, 1573; doi:10.3390/nano10081573 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0003-4425-2704
https://orcid.org/0000-0003-1950-3233
http://www.mdpi.com/2079-4991/10/8/1573?type=check_update&version=1
http://dx.doi.org/10.3390/nano10081573
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2020, 10, 1573 2 of 15

of ultrahigh spatial frequency LIPSSs (UHSFLs) because (1) UHSFLs whose periods are as small
as 40 nm [17,21] are very difficult to form on semiconductors (so far, only two reports on Si) when
compared with normal HSFLs with periods in the range of 100–200 nm [15,22,23]; (2) The periods
of UHSFLs prepared on metals are much smaller than normal HSFLs with periods of hundreds
of nm [24–26]. For example, Bosen et al. prepared homogeneous UHSFLs (periods: 70–90 nm) on Ti by
fs-LA in air (λ = 790 nm, τ = 30–160 fs and υ = 1 kHz) [27–29] and found that such fine structures can
be easily destroyed during the friction tests in two different lubricating oils [30]. Sedao et al. revealed
the role of surface melting and resolidification in the formation of UHSFLs of 70–90 nm in a period
on Ni [31].

Hierarchical LSFLs/UHSFLs structures are another kind of typical and unique structure only
obtainable on transition metals (unavailable on semiconductors) via fs-LA. Abou–Saleh et al. found
that UHSFLs were located between LSFLs on the Cr surface treated by fs-LA and proposed that
spallation-induced roughness was a key factor in triggering the formation of UHSFLs during multi-pulse
fs-LA [32]. Based on comprehensive experiments of fs-LA in acetone, our group demonstrated the
material-dependent formation of hierarchical UHSFL/LSFL nanostructures on the group IVB−VIB
transition metals (e.g., Ti, V, Nb, Ta, Mo and W) [18]. On group VIII (e.g., Fe, Pd, Pt and Ni) and IB/IB−IIB
(e.g., Au, Ag, Cu and CuZn) transition metals or alloy, only LSFLs and hole-rich microstructures, rather
than the hierarchical LSFLs/UHSFLs, were yielded [18]. The orientations of UHSFLs are commonly
considered to be parallel to the direction of laser polarization [27]. In 2011, Vincenc Obona et al.
reported that HSFLs were not dependent on the polarization vector on stainless steel [33]. Our group
recently confirmed that Marangoni bursting was the predominant factor to determine the orientations
of UHSFLs during fs-LA in liquids (fs-LAL) and clarified that UHSFLs were perpendicular to the
curvatures of LSFLs [18].

Considering the uniqueness of LSFLs/UHSFLs obtained by fs-LA, it is highly desirable
to integrate them onto microstructures in order to construct multiscale hierarchical
micro/nanostructures, which will promise the generation of specific functions. To date, although
many hierarchical micro/nanostructures [34,35] have been created and some of them have been
applied in cellular behavior control [36,37], color imprinting [38], antireflectance [35,39,40] and
superhydrophobicity/superoleophobicity [41–43], a report on the preparation and application of
LSFLs/UHSFLs-containing hierarchical micro/nanostructures is still lacking.

In this work, aimed to fill this gap, we demonstrate the possibility of developing multiscale
hierarchical structures via fs-LA of W and Ta in water and investigate how such hierarchical
microstructures influence the optical properties. The surface morphologies are analyzed by scanning
electron microscopy (SEM), energy dispersive spectrometer (EDS) and three-dimensional (3D)
confocal microscopy. Two different hierarchical micro/nanostructures on ablated Ta and W samples
are chosen as representatives to demonstrate the impact of hierarchical microstructures on
polarization-dependent reflectance.

2. Materials and Methods

An fs laser system (FCPA µ Jewel D-1000-UG3, IMRA America Inc., Ann Arbor, MI, USA) was used
for laser ablation. The pulse duration, wavelength and repetition rate were 457 fs, 1045 nm and 100 kHz,
respectively. The laser power was set at 600 mW. The linearly polarized laser beam was focused by
a 20× objective lens (numerical aperture, 0.42; Mitutoyo, Kawasaki, Japan). The laser spot size was
3.4 µm, so the fluence was calculated to be 66.12 J/cm2. Ta (10 × 10 × 1 mm3) and W (10 × 10 × 2 mm3)
targets were placed inside a glass container (Φ = 45 mm; 20 mm height) filled with 8 and 10 mL of
water. The liquid thickness between the air-water interface and the ablated surface was kept at 5 mm.
During fs-LAL, a syringe was used to remove the persistent bubbles adhering to the substrates from
time to time. Otherwise, the persistent bubbles would cause a severe reflection and refraction of laser
pulses, resulting in an inefficient ablation [44]. A line-by-line scanning method was employed with a
line interval of 5 µm. The scanning direction was perpendicular to the light polarization direction.
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SEM (Quattro ESEM, Thermo Fisher Scientific, Tokyo, Japan) equipped with an EDS module and a
confocal laser scanning microscope was used to characterize the structures formed on the ablated
substrates. Fourier transform infrared (FTIR) spectroscopy (FT/IR-6300, JASCO, Tokyo, Japan) was
used to test the polarization-dependent reflectance.

3. Results and Discussion

3.1. SEM Characterization of Hierarchical Micro/Nanostructure Morphologies

Figure 1a displays the typical microstructures obtained by fs-LA of Ta in water. The microstructures
are not uniform, consisting of microholes, curved troughs and mountain-like bump structures.
The formation of curved troughs is attributed to the refraction and reflection by the bubbles generated
during fs-LAL [17]. The diameter of microholes ranges from 2 to 5 µm. Enlarged images (Figure 1b,c)
indicate that LIPSS nanostructures with periods of 400–600 nm are located on all microstructures.
Although LIPSSs observed on the microstructures are categorized into the mixture of LSFLs/HSFLs
(according to the definition of LSFL (λ/2 ≤ ΛLSFL ≤ λ) and HSFL (ΛHSFL < λ/2), together with the laser
wavelength of 1045 nm used for fs-LAL), the formation mechanism should be the same due to the
small difference in the period. The orientations of LSFLs/HSFLs are perpendicular to the direction
of light polarization. Bifurcations of LSFLs can be obviously seen on the microstructures (Figure 1c).
The depths of bifurcated LSFLs/HSFLs are much shallower than other parts (Figure 1d). A large
amount of UHSFLs of 30–50 nm per period are located in the troughs and joint regions of LSFLs/HSFLs.
The periods of UHSFLs are much narrower than those prepared on Ti by fs-LA in air [27–29]. In a
relatively deeper trough of LSFLs/HSFLs, UHSFLs are characterized by extra stretched nanowires from
their middle parts (pointed out by green arrows in Figure 1e), so that it is difficult to differentiate them
from main UHSFLs (Figure 1e). In contrast, UHSFLs at the shallow region are much easier to identify,
and some UHSFLs are decorated with nanodots (pointed out by green arrows in Figure 1f). Left-bent,
right-bent and zigzag UHSFLs (pointed out by pink arrows) are all observed (Figure 1f), indicating
that an extra turbulent factor is triggered during the formation of UHSFLs.

Figure 1g demonstrates the possibility of producing microgrooves decorated with both tilted
and horizontal LSFLs/HSFLs (magnified images are also shown in Figure 1h,i). The orientation of
LSFLs/HSFLs pointed out by a green arrow is perpendicular to the direction of light polarization
(Figure 1h), while the tilted LSFLs/HSFLs deviate by 18◦ from the microgroove direction, as expected
(Figure 1i), resembling the herringbone structures on copper surfaces obtained by s-polarized fs laser
ablation at a large incident angle [45]. Schwarz et al. reported that an inclined fs laser can significantly
alter the orientations of LSFLs on fused silica [46]. Zheng et al. also proposed that the inclined
angle at the boundary of a Gaussian beam can lead to the formation of slantwise-oriented LIPSSs [47].
Hence, the formation of herringbone structures shown in Figure 1i is deemed to be caused by an inclined
fs laser ablation arising from bubble reflection/refraction [17]. A higher magnification of LSFLs/HSFLs
structures allows for the observation of the states of UHSFLs on the side walls of LSFLs/HSFLs, as shown
in Figure 1j–l. The orientations of UHSFLs depend on the LSFLs/HSFLs where they are located. At the
tip of LSFLs/HSFLs where LSFLs/HSFLs change their curvature, UHSFLs can be even aligned from left
to right (indicated by a green arrow in Figure 1k). On the ridge of LSFLs/HSFLs, UHSFLs are always
aligned perpendicular to the ridge of LSFLs (Figure 1l) along the ridge’s inclination. This finding is in
accordance with our previous report, which showed that USHFLs are not parallel to the direction of
light polarization but strongly related to the LSFLs/HSFLs curvatures [18]. The simultaneous formation
of LSFLs/HSFLs may originate from the excitation and interference of counter-propagating surface
plasmons with extreme wavenumbers during fs-LAL [48], while the formation of UHSFLs is attributed
to Marangoni bursting during the formation of LSFLs/HSFLs molten layers [18].
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craters are much shallower than those on the side part of craters, as shown in Figure 2c. At the 
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interconnecting with each other to form nanowire networks with various polygonal patterns (Figure 
2e). The joint points of the polygonal UHSFLs networks are featured by ejected particles (Figure 2f). 
On the side ridge of the crater where deeper LSFLs/HSFLs are created (Figure 2g), UHSFLs are not 
so chaotic. UHSFLs are only interconnected in the deepest region of LSFL but become parallel at the 
outer space of LSFLs/HSFLs (Figure 2h magnified from the green rectangle in Figure 2g). In the 
yellow region of Figure 2g, UHSFLs with periods of 30–50 nm are parallel to each other, and their 
orientations are not parallel to the direction of light polarization but perpendicular to the curvatures 
of the underlying LSFLs/HSFLs (Figure 2i). In the regions where LSFLs/HSFLs have both deep 
troughs and inclined ridges (Figure 2j), UHSFLs are ordered in different ways. UHSFLs are highly 
ordered in the deep region of LSFLs/HSFLs, while they become very disordered on the outermost 
inclined ridges (indicated by white arrows in Figure 2k,l). This means that some factors that can 
arouse the disturbance of UHSFLs are triggered during the solidification of UHSFLs but that such 
turbulent factors have a limited influence on the deep troughs of LSFLs/HSFLs. The turbulent effect 
generated during fs-LAL of W is much stronger than that generated during fs-LAL of Ta. Similarly, 
Zhao et al. observed the formation of chaotic nanospikes (diameter 10–100 nm, length up to 250 nm) 
between LSFLs after the single-pulse fs laser irradiation of W in air [49]. Although the mechanism is 
still unclear and deserves further investigations, we speculate the following: W is a material with a 

Figure 1. Scanning electron microscopy (SEM) images of hierarchical micro/nanostructures obtained
by fs-LA of Ta in water. (a,g) Two typical low magnification images showing different kinds of
microstructures at different regions. Light polarization direction is shown in (b). (b–d,h–j) are images
magnified from the white rectangles of (a–c,g–i), respectively. (e/f,k/l) are images magnified from the
green and yellow rectangles in (d,j), respectively.

The structures obtained by fs-LAL of W in water show different morphologies from Ta.
Many shallow microcraters (Figure 2a) are created on the W surface. All microstructures are decorated
with LSFLs/HSFLs of 400–600 nm per period. The orientations of LSFLs/HSFLs are perpendicular to the
direction of light polarization (Figure 2b). The LSFLs/HSFLs which are located at the bottom of craters
are much shallower than those on the side part of craters, as shown in Figure 2c. At the bottom of the
craters with shallow LSFLs/HSFLs (Figure 2d), UHSFLs become very chaotic, interconnecting with
each other to form nanowire networks with various polygonal patterns (Figure 2e). The joint points of
the polygonal UHSFLs networks are featured by ejected particles (Figure 2f). On the side ridge of the
crater where deeper LSFLs/HSFLs are created (Figure 2g), UHSFLs are not so chaotic. UHSFLs are only
interconnected in the deepest region of LSFL but become parallel at the outer space of LSFLs/HSFLs
(Figure 2h magnified from the green rectangle in Figure 2g). In the yellow region of Figure 2g, UHSFLs
with periods of 30–50 nm are parallel to each other, and their orientations are not parallel to the
direction of light polarization but perpendicular to the curvatures of the underlying LSFLs/HSFLs
(Figure 2i). In the regions where LSFLs/HSFLs have both deep troughs and inclined ridges (Figure 2j),
UHSFLs are ordered in different ways. UHSFLs are highly ordered in the deep region of LSFLs/HSFLs,
while they become very disordered on the outermost inclined ridges (indicated by white arrows in
Figure 2k,l). This means that some factors that can arouse the disturbance of UHSFLs are triggered
during the solidification of UHSFLs but that such turbulent factors have a limited influence on the
deep troughs of LSFLs/HSFLs. The turbulent effect generated during fs-LAL of W is much stronger
than that generated during fs-LAL of Ta. Similarly, Zhao et al. observed the formation of chaotic
nanospikes (diameter 10–100 nm, length up to 250 nm) between LSFLs after the single-pulse fs laser
irradiation of W in air [49]. Although the mechanism is still unclear and deserves further investigations,
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we speculate the following: W is a material with a high imaginary part of permittivity (ε”: 32.58
at 1060 nm [50]) that enables a very high absorbance of infrared light. Considering that an infrared
pulse laser (wavelength: 1045 nm) was used for fs-LAL, the as-prepared surface structures effectively
absorbed the beam energy, which caused an increase in the liquid temperature near the structures
and may also have aroused additional magnetic and electrical effects near the surface structures [50].
In consequence, the orientations of UHSFLs were greatly disturbed during their solidification.
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Figure 2. (a) SEM images of hierarchical micro/nanostructures obtained by fs-LA of W in water.
The light polarization direction is shown in (b). (b–f) are magnified images from the white rectangle
regions in (a–e), respectively. Parallel UHSFLs are indicated by white arrows in (i,k,l). (g,j) Two typical
hierarchical LIPSS nanostructures with different states of UHSFLs. (h/i,k/l) are magnified images from
the green and yellow rectangle regions in (g,j), respectively.

To compare the difference between our results and previous reports, LIPSSs obtained on Ta and W
by fs-LA in both air and liquids are summarized in Table 1. In our previous report, we showed that,
under the same ablation condition, the periods of LIPSSs (including both LSFLs/HSFLs and UHSFLs)
obtained by fs-LAL in acetone [18] were almost the same as those produced by fs-LA in water shown
in this work. Studies on Ta-LIPSS are very limited. Barmina et al. obtained LSFL/UHSL by fs laser
ablation in water, but the SEM images of structures shown in their work were captured from an inclined
angle, making it very hard to identify the periods of LSFLs [51]. Jorge–Mora et al. produced LSFLs on
Ta surfaces by fs-LA in air with LIPSS periods which were slightly smaller than the laser wavelength
(λ = 1030 nm vs. Λ = 780 nm) [52] but much larger than the periods (370–600 nm) of Ta-LIPSSs obtained
in liquids (this work and ref. [18]). This means that liquid is beneficial for achieving narrower periods
of LIPSSs, a trend that is also confirmed by the summary of the periods of Si-LIPSSs obtained in
different environments [15]. Recently, Kudryashov et al. proposed that the factors of the squared
optical refraction index (n) of environments can be used to estimate the environment-dependent
periods (Λ) of LIPSSs following the trend of Λ ∝ 1/n2, which indicated that liquids with a higher
refraction index than air normally produced smaller LIPSS periods [48]. The refractive indices of air,
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water, ethanol and acetone are 1, 1.33, 1.36 and 1.36, respectively, which would give ratios of LIPSS
periods in air/water/ethanol/acetone (Λair/Λwater/Λethanol/Λacetone) of 1/1.332/1.362/1.362. According to
the fact that 780 nm is the period of Ta-LIPSS obtained by fs-LA in air at λ = 1030 nm, the periods of
Ta-LIPSSs obtained in water and ethanol/acetone at the wavelength of 1030 nm should be 441 and
421 nm, respectively. This calculation fits well with the period range of 400–600 nm experimentally
obtained by fs-LA in water and acetone at a close wavelength of 1045 nm, as presented in this work
and our previous work [18]. Hence, it can be concluded that the theoretical trend of Λ ∝ 1/n2 proposed
by Kudryashov et al. [48] is at least applicable to some cases.

Table 1. Summary of Ta and W LIPSSs obtained by laser ablation in air and liquids.

Sample Laser Parameters Environment LIPSSs Ref

Ta, W 457 fs, 1045 nm, 100 kHz, 600 mW,
6 µJ/pulse, 66.12 J/cm2, 1 mm/s water 400–600 nm

30–50 nm This work

Ta, W 457 fs, 1045 nm, 100 kHz, 600 mW,
6 µJ/pulse, 66.12 J/cm2, 1 mm/s acetone 370–600 nm

20–60 nm [18]

Ta 500 fs, 1030 nm, 100 kHz, 2–6 µJ/pulse,
0.30 J/cm2, 200 mm/s air 780 ± 48 nm [52]

W 30 fs, 800 nm, 1 kHz, 0.6–2.5 J/cm2 ethanol 310–340 nm [55]

W 70 fs, 800 nm, 1 kHz, pulse delay 0–14 ps,
1 J/cm2 ethanol 310–370 nm [56]

W 180 fs, 800 nm, other parameters cannot
be found ethanol 350 nm [54]

W 200 fs, 2 kHz, 775 and 387 nm, 0.11 and
0.1 J/cm2 air 400–460 nm

130–230 nm [57]

W 160 fs, 800 nm, 10 Hz, 1.1–34 µJ/pulse,
0.2–1 J/cm2 air 600–700 nm [58]

W 50 fs, 800 nm, 0.09 J/cm2 air 800 nm [59]
W 30 fs, 800 nm, 1 kHz, 0.09–1.81 J/cm2 air 634 ± 48 nm [60]
W 33 fs, 800 nm, 1 kHz, 0.4–3.2 µJ/pulse air 350–600 nm [26]
W 33 fs, 800 nm, 1 kHz, 3–12 J/cm2 air ~550 nm [49]
W 90 fs, 800 nm, 80 MHz, 18–24 mW air 150–185 nm [53]
W 65 fs, 400/800 nm, 1 kHz, 0.35/0.37 J/cm2 air 289/542 nm [61]
W 150 fs, 30 µJ/pulse, 0.77 J/cm2 air ~600 nm [62]
W 140 fs, 400 nm, 1 kHz, 0.5 J/cm2 air 304–309 nm [63]

W 50 fs to 8 ps, 800 nm, 1 kHz, 0.1–1.2 mm/s,
0.8–6.2 J/cm2, 0.1–1.2 mm/s air 450–690 nm [64]

Compared to Ta-LIPSSs, W-LIPSSs have been studied much more. Roughly, the LIPSS periods
obtained by fs-LAL in liquids such as ethanol and water are smaller than those obtained in air (Table 1).
However, varying laser parameters such as pulse duration, wavelength, repetition rates and laser
fluences can significantly change the periods of W-LIPSSs in an air environment. Some of W-LIPSSs’
periods are within the period range of W-LIPSSs obtained in liquids. The most noteworthy involves
using an fs laser with an ultrahigh repetition rate of up to 80 MHz: the periods of W-LIPSSs are as
small as 150–185 nm [53], equal to half of the W-HSFL periods obtained in liquids [18,54–56]. Similarly,
LAL of Si in oil at a repetition rate of 90 MHz allows for the formation of abnormal LIPSSs with
sub-100 nm periods [21]. The reason for this phenomenon is unknown, and it deserves a much deeper
investigation. However, it is not within the scope of the present work.

3.2. 3D Morphology Characterization

Figure 3 displays the 3D morphologies and corresponding cross sectional profiles of the hierarchical
micro/nanostructures obtained by fs-LAL of Ta and W in water. The typical structures obtained on Ta
surfaces are microstructures with random grooves (Figure 3a,e). The maximal depths of the grooves
are ~30 µm, as indicated by the cross-sectional profiles shown in Figure 3b,f. The heights of the
microstructures fluctuate heavily, indicating the randomness of the microstructures. In contrast,
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a crater-rich region is observed on the W surface (Figure 3c). The depths of the microcraters are very
shallow, less than 5 µm. Some inhomogeneous grooves with a maximal depth of 23.8 µm are located
near the crater-rich region (Figure 3c). The observation of another ablated region, shown in Figure 3g,
indicates that the ablation depth on the W surface can still reach 30 µm (the highest region indicated by
red color in Figure 3g corresponds to the unablated region). On the W surface, fs-LAL also induced the
formation of different groove widths (Figure 3g,h).
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Figure 3. (a,c,e,g) Typical 3D morphologies and (b,d,f,h) corresponding cross-sectional profiles of
hierarchical micro/nanostructures obtained by fs-LAL of (a,b,e,f) Ta and (c,d,g,h) W in water. (a,e) and
(c,g) are observed at two different regions from ablated Ta and W samples, and are used to demonstrate
the inhomogeneity of the as-prepared surface structures.

3.3. EDS Analysis

Figure 4 displays the EDS spectra of structures from the orange rectangles in each inset SEM image
obtained by fs-LAL of Ta and W in water. The atomic percentages of metal, carbon and oxygen were
tested for two different regions of the hierarchical micro/nanostructures of both Ta and W samples,
as shown in Table 2, while also being tested for unablated metal substrates. The atomic percentages
of Ta, C and O are 48.79%, 26.34% and 24.87% for the first region of the Ta-structure (Figure 4a,
inset image) and 46.40%, 25.39% and 28.22% for the second region (Figure 4b), respectively; and the
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atomic percentages of W, C and O are 57.06%, 27.19% and 15.75% for the first region of the W-structure
and 49.99%, 28.26% and 21.75% for the second region, respectively. The atomic percentages of the
non-ablated surfaces of Ta and W are 40.94% Ta, 41.82% C and 17.15% O, and 67.72% W, 20.60% C and
11.69% O, respectively.
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Figure 4. EDS analysis of the structures obtained by fs-LAL of (a,b) Ta and (c,d) W in water.
The information about the atomic percentages of metal (W or Ta), carbon (C) and oxygen (O) measured
from each sample were included in each figure. (a,b) and (c,d) are measured at two different regions of
surface structures obtained by fs-LAL of Ta and W, respectively.

Table 2. Atomic percentages of non-ablated Ta/W and two regions of ablated Ta and W.

Sample Metal (Ta/W) Carbon Oxygen

Non-ablated Ta 40.94 41.82 17.15
Ta ablated region 1 48.79 24.84 26.34
Ta ablated region 2 46.40 25.39 28.22

Non-ablated W 67.72 20.60 11.69
W ablated region 1 57.06 27.19 15.75
W ablated region 2 49.99 28.26 21.75

Despite a large difference in carbon percentages between the unablated Ta and W targets, the carbon
percentages are almost the same for different structures on all ablated Ta and W samples. However,
the oxidation rates are distinctly different for the Ta and W hierarchical structures and are speculated to
be associated with different thermal properties of Ta and W, as listed in Table 3. Since it is well known
that the formation of UHSFLs is related to the material melting phenomenon during fs-LA [18,31],
the melting periods of the ablated materials must strongly depend on the thermal properties of the
ablated materials. Both W and Ta have almost the same specific heat of 0.13 and 0.14 J/g K [65].
However, other thermal properties are very different. The thermal diffusivity of ~70 mm2/s for W [66]
is much higher than that of 24.2 mm2/s for Ta [67] at room temperature, and both decrease with an
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increasing temperature [66]. The thermal conductivities of W and Ta are thus calculated to be 170 and
57 W/m K, respectively. As can be seen, both the thermal diffusivity and thermal conductivity of W are
much higher than those of Ta, indicating that W should tend to cool more rapidly than Ta after laser
heating. Additionally, the melting temperature of 3422 ◦C for W is relatively higher than that of 3017 ◦C
for Ta [65,68]. For Ta, the smaller thermal conductivity and thermal diffusivity with a lower melting
temperature must endow a relatively longer melting period than W so as to enable the interaction
with surrounding oxygen species during fs-LAL. The states of laser pulses such as repetition rates,
pulse energy and incident angle may all be modulated by random bubble reflection/refraction [17],
so that the thermal states in different positions change a lot. Meanwhile, the shorter periods of the
thermal effect of W during fs-LAL may be attributed to a great discrepancy between the oxidation rates
at different regions (Figure 4c,d). Nevertheless, despite different oxidation rates in different positions,
when compared with the oxygen percentages of the unablated W samples, fs-LAL in water is indeed
capable of enhancing the oxidation of the ablated surfaces.

Table 3. Thermal properties of metal Ta and W.

Material Melting
Temperature (◦C)

Thermal Diffusivity
(MM2/S)

Thermal Conductivity
(W/m·K)

Specific Heat
(J/g K)

Ta 3017 24.2 57 0.14
W 3422 ~70 170 0.13

3.4. Polarization-Dependent Reflectance

The optical properties of the structures strongly depend on the morphology of the structured
surfaces. Anisotropic structures such as parallel grooves [69] and L-shape structures [70] generally
possess polarization-dependent reflectance. In this regard, two different regions of the multiscale
hierarchical micro/nanostructures of the ablated Ta and W samples were measured for the
polarization-dependent reflectance study. Figure 5a,b and Figure 5c,d show the reflective spectra in two
different regions on the ablated Ta and W targets in the wavelength range of 1.25–25 µm, respectively.
The red curves were measured with the probe light whose polarization direction was perpendicular
to the laser scanning direction for fs-LA and was defined as Y-reflectance (as indicated in Figure 5b),
while the blue curves were parallel to the horizontal direction (X-reflectance).
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Compared to the reflectance, reported elsewhere, of flat hierarchical LSFL/UHSFLs structures
obtained by fs-LA in acetone [18], the reflectances in both X- and Y-directions decrease by 60~70% for
both the Ta and W samples. This indicates that the endowment of LSFL/UHSFLs hybrid structures
on microstructures can significantly enhance the light absorbance and light trapping in the NIR-MIR
range, especially in the MIR range. Each X- and Y-reflectance of the Ta measure at two different
positions in the wavelength range of 1.25–20 µm shows almost the same characteristics, although they
have different reflectance intensities, indicating that the as-prepared Ta structures are similar but with
different structure heights (Figure 5a,b). Many small X- and Y-reflection peaks appear in the range
of 15–20 µm for Ta, which are ascribed to the existence of LSFLs/HSFLs/UHSFLs [18]. The spectra
fluctuations in the wavelength of 20–25 µm of both two Ta samples may be due to inhomogeneous
microspikes, as shown in Figure 4a,b.

Figure 5c,d displays variations of the polarization-dependent reflectance on the relatively flat
hierarchical structure and the grooved hierarchical micro/nanostructure of W in the wavelength range
of 1.25–25 µm, respectively. The reflectance of both samples is almost the same in the range of
1.25–5 µm (Figure 5c,d), with the exception of some small peaks appearing on the grooved sample.
The small peaks at ~3.33 µm (as pointed out by a green arrow in Figure 5d) are attributed to the
CH stretching from the alkyl groups [71,72]. Such CH stretching mode peaks do not appear on the
relatively flat structure (Figure 5c), indicating the structure-dependent surface chemistry induced by
fs-LAL. As the wavelength increases from 5 to 20 µm, the X- and Y-reflectances of the relatively flat
hierarchical structures look almost same, and both gradually decrease. Broad peaks appear at 14 µm in
the X-reflectance and at 18 µm in the Y-reflectance, but the maximal value of each of these two peaks
is only slightly higher than the reflectance of the other direction, which is ascribed to the flatness of
the micro/nanostructures. Unlike this relatively flat structure, due to the existence of aligned grooves
(Figure 5d), the reflectance of the grooved hierarchical micro/nanostructure shows basin-like curves,
with new peaks appearing at 15 µm for the X-reflectance and 17.5 µm for the Y-reflectance. Due to
the structure difference in the two samples, the polarization-dependent reflectance in the wavelength
range of 17.5–25 µm is also different (Figure 5c,d). According to the theory (λ/4 = period of trenches)
that the reflectance minima appear at λ = 20 µm in FTIR spectra (Figure 5c,d) [12,13], the trench of the
W structures is estimated to be 5 µm in width. From these results, it can be concluded that anisotropic
hierarchical micro/nanostructures prepared by fs-LAL can be used to investigate structure-dependent
reflectance, a topic that, to date, has been seldom studied in relation to laser-structured surfaces.
From the reflectance of the two regions of both the Ta and W structures, it can be concluded that fs-LAL
generates more homogenous structures on Ta than on W, which in turn can help explain the huge
difference in the region-dependent W structural morphologies shown in Figure 3c,g and oxidation
rates shown in Figure 4c,d.

The EDS analysis (Figure 4) indicates that the ablated surfaces may not be fully oxidized. Moreover,
the formation of LIPSSs, including all LSFLs/HSFLs/UHSFLs, is confirmed as resulting from the melting
behavior of metal materials [31]. The hierarchical structures should be a mixture of both metal and metal
oxides. Since metal oxide materials, including both tantalum oxide and tungsten oxide, are normally
insulators [73,74], one should consider composing the as-prepared hierarchical structures out of a lot
of metal-insulator-metal (MIM) structures [75], which are good NIR-MIR absorbers due to the fact that
their electronic and magnetic resonances occur synchronously at a certain wavelength. These MIM
absorbers could contribute to reflectance variations at different wavelengths for different structures on
both Ta and W surfaces.

4. Conclusions

This work presented the feasibility of developing a hierarchical micro/nanostructure by fs-LAL
of Ta and W in water. Due to random light reflection and refraction induced by bubbles, random
microstructures, including microgrooves, microcraters and mountain-like microstructures, were formed.
All microstructures were fully decorated with hybrid LSFL/HSFL/UHSFLs nanostructures. The periods
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of LSFLs/HSFLs were in the range of 500–800 nm, and UHSFLs had periods of 30–50 nm. As compared to
UHSFL structures obtained on Ta, which had a very limited structure disorder, those prepared on the W
surface were very chaotic, especially in the shallow troughs of LSFLs/HSFLs and their outermost ridges,
which may be associated with the difference in thermal properties of Ta and W, including the melting
temperature, thermal diffusivity and thermal conductivity. Using two different micro/nanostructures on
the Ta and W surface as representatives, it was proven that the introduction of a microgroove rendered
the polarization-dependent reflectance at wavelengths of 15 and 17.5 µm along the X- and Y-directions,
respectively. Ta and W multiscale micro/nanostructures presented in this work possessed lower
polarization-dependent reflectances than those of LSFLs/UHSFLs hybrid nanostructures prepared by
fs-LAL in acetone [18], which one may ascribe to the presence of microstructures. Integrating hybrid
LSFLs/HSFLs/UHSFLs with microstructures into multiscale hierarchical micro/nanostructures can
significantly enhance the high absorbance and light trapping in the NIR-MIR range, especially in the
MIR range. This work may inspire the preparation of polarization-dependent reflective metasurfaces
by fs-LAL, along with studies on the corresponding structure-dependent reflectance.
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