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High-precision three-dimensional
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optical clue fusion
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Three-dimensional (3D) imaging plays a crucial role in autonomous driving, medical diagnostics, and
industrial inspection by providing comprehensive spatial information. Metalens-based 3D imaging is
highly valued for imaging applications thanks to its compactness, with enhanced precision remaining
a key research pursuit. Here, we present an integrated high-accuracy 3D imaging system combining
binocular meta-lens with an optical clue fusion network. Our innovation lies in the synergistic fusion of
physics-derived absolute stereo depthmeasurements andmachine learning-estimated relative depth
through adaptive confidence mapping - the latter effectively addressing the inherent limitations of
absolute depth estimation in scenarios with insufficient matching features. This hybrid approach
achieves unprecedented precision of depth estimation (error <1%) while maintaining robust
performance across feature-deficient surfaces. The methodology significantly expands viable
detection areas and enhances measurement reliability, accelerating practical implementations of
metalens-enabled 3D imaging.

Modern vision systems demand compact, high-performance solutions for
object detection and depth perception—critical components in fields such
as autonomous driving1, robotics2, and augmented reality3. Traditional
stereo imaging setups using conventional lenses or multiple cameras tend
to be bulky and require complex calibration procedures, limiting their
integration into miniaturized platforms4. This has spurred the search for
innovative optical designs and integration strategies that reduce system
complexity while maintaining high-performance imaging and depth
sensing. Recent advances in nanophotonics have introduced optical
metasurfaces5,6—ultrathin, planar optical devices engineered with special
designs—to overcome these challenges. By tailoring the phase, amplitude,
and polarization of light at subwavelength scales, metasurfaces offer high
design flexibility, enabling the creation of various optical elements such as
lenses7–10, sensors11–13, holograms14,15, resonators16,17, and others. More-
over, they have been successfully utilized in diverse applications such as
imaging18–20, edge detection21, encryption22, wavefront engineering23, and
optical computing24.

There has been extensive research on employing metasurfaces for
depth sensing. The mainstream approaches in this area can be broadly

divided into monocular25–28 and binocular12,29 systems. Monocular schemes
typically employ passive imaging techniques such as dual-focal designs25,26

andmicro-lens arrays30. Although these methods eliminate the need for the
calibration process inherent in binocular systems, they often face challenges
such as imaging quality and inaccuracies of depth estimation25. In contrast,
binocular systems demonstrate superior imaging quality while maintaining
a compact design. The acquisition of depth information by binocular
imaging depends on the perspective difference and pixel offset of the scene’s
texture information on the imaging surface. This depth information pro-
cessingmethodwill notwork effectively for low-texture scenes. Recent years
have witnessed a growing prevalence of neural networks in metasurfaces,
not only for design optimization31 but also for algorithmic
implementations32,33, resulting in significant enhancements to metasurface
performance and capabilities. In particular, deep learning architectures—
especially convolutional neural networks34,35—excel at extracting disparity
information from stereo images, even in regions characterized by low tex-
ture or ambiguous features36. As demonstrated in our previous work, this
synergy betweenmeta-lens imaging and neural network processing enables
precise, real-time depth estimation, thereby boosting object detection37 and
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spatial understanding in complex environments29. In this study, we propose
an Optical Clue Fusion Network (OCFN) that robustly integrates explicit
stereo-geometric depth cues with implicit monocular depth priors for
accurate depth estimation. Furthermore, we seamlessly incorporate this
algorithm into a binocular metalens imaging system, as illustrated in Fig. 1.
Rather than relying solely on stereo disparity, OCFN first refines the raw
absolute depth map and then leverages a transformer-based monocular
estimator to provide dense relative depth information. Ourmethod yields a
high-quality, dense absolute depth map through a two-stage, certainty-
aware fusion process that includes calibrating the relative depth map via
scaling and subsequentlyblending itwith the cleaned stereodepth (weighted
by Gaussian-smoothed confidence values). This sophisticated fusion strat-
egy significantly enhances 3D scene perception, enablingmore detailed and
accurate depth representation. The compact and efficient nature of our
binocular metalens system, combined with the powerful OCFN algorithm,
opens new possibilities across numerous fields. Potential applications
include immersive virtual reality experiences, responsive gaming environ-
ments, advanced 3D rendering, portable endoscopic devices, precise facial
recognition systems, intuitive human-computer interaction interfaces, and
reliable perception systems for autonomous driving.

Results
Binocular meta-lens
The binocular meta-lens consists of two identical meta-lenses, each with a
diameter of 2.6mm, separated by a horizontal distance of 4mm. The phase
profile for each individual meta-lens is designed as follows:

ϕ x; y; λ
� � ¼ � 2π

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� f
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where λ is the operating wavelength (532 nm in our design), and f is the
designed focal length (10mm). We employ GaN cylindrical nanoantennas
asmeta-atoms. Eachmeta-atomprovides distinct phasemodulation, which
depends on the feature size of themeta-atoms. The height of themeta-atom

isfixedat 750 nm,while the diameter of cylindricalmeta-atoms ranges from
90 nm to 196 nm, with a period of 260 nm, as shown in Fig. 2a. The
polarization-independent phase modulation covers the entire 2π range by
varying the diameter of the cylindrical GaN nanostructures. The phase shift
and transmission intensity data are derived from numerical simulations
using COMSOL Multiphysics®. The Simulation setup can be found in
Section 1 of the Supporting Materials. Figure 2b presents the optical
characteristics of the meta-atoms within the meta-device, obtained using
COMSOL Multiphysics®. The transmittance fluctuates slightly across the
entire range of diameter but generally remains around 0.95. As the diameter
increases, the phase gradually increases from approximately 0 to 2π radians.
The meta-atom array of the metalens is arranged according to the phase
profile described in Eq. (1).

Figure 2c presents the photograph of the fabricated binocular meta-
lens. The sample fabrication process is detailed in the Methods section.
Figure 2d displays the scanning electron microscope (SEM) images of the
meta-lens, confirming that no cracks or pores are present in the fabricated
meta-atoms. The zoomed-in, tilted view of a meta-atom in Fig. 2e further
reveals the well-collimated 750 nm-high structures achieved via precise
etching.We constructed an optical setup to evaluate the performance of the
binocular meta-lens. The experimental setup is described in Section 4 of the
SupportingMaterials and is illustrated in Fig. S3. The results of the scanning
light field experiment are presented in Fig. 2f. The left eye meta-lens has a
focal length of 9.962mm, and the right eye meta-lens has 9.958mm. At a
wavelength of 532 nm, the measured focusing efficiency is 74%. The effi-
ciency is defined as the ratio of the optical powerwithin the focal spot area—
where the central intensity falls to half its maximum value—to the total
incident optical power across the meta-lens area. Additional parameters of
the metalens are detailed in Section 3 of the Supporting Materials and
illustrated in Fig. S2.

Furthermore, we integrated the binocular meta-lens onto a CMOS
sensor, as depicted in Fig. 2g, and incorporated a 532 nm filter to achieve
optimal performance. Although our proposed meta-lens exhibits a
broadband response, its efficiency and the shape of its focal spot are

Fig. 1 | Schematic diagram of high-precision 3D imaging. The 3D imaging is based on binocular metalens and optical clue fusion, highlighting potential practical
applications.
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affected when operating at wavelengths other than 532 nm. Detailed
broadband experimental results can be found in our previous work12,29,37.
Furthermore, the integration of broadband design into the system is
feasible38,39. Figure 2h shows the raw image captured by our binocular
imaging system, where the left and right images are acquired simulta-
neously in a single shot.

Optical Clue Fusion Network
The proposedOptical Clue FusionNetwork (OCFN) is developed to provide
high-quality and reliable 3D perception of the scene. As illustrated in Fig. 3,
OCFN is designed to fuse two complementary sources of depth information:
sparse, absolute depth obtained from stereo matching and dense, relative
depth predicted by a pretrained monocular depth estimation model,

Fig. 2 | Schematic diagram of our binocular metalens system, showing its design,
fabrication, and optical properties. (a) The schematic diagram of the meta-atom
features a cylindrical GaN structure positioned on a sapphire substrate. (b) Optical
characteristics of the meta-atom: the red curve shows the phase variation with
respect to the diameter, while the purple curve shows the efficiency variation for the
diameter. (c) Photograph of the fabricated binocular meta-lens. (d) SEM image of

the meta-lens (scale bar: 1 μm). (e) Zoomed-in SEM image of the meta-lens (scale
bar: 1 μm). (f) Optical scanning focusing profile results for the left and right eyes
meta-lenses. (g) Schematic of the binocular meta-lens integrated with a CMOS
sensor. (h) Raw single-shot image captured by the binocular system, simultaneously
displaying left and right views.
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specificallyDepthAnything40,moredetails of themonoculardepthestimation
model could be found in Section 6 of Supporting Materials. The motivation
behind OCFN is to overcome the limitations of each individual method—
stereo depth is geometrically accurate but often incomplete or noisy in tex-
tureless or occluded regions, while monocular depth is dense and visually
consistent but lacks real-world scale and may contain local distortions.

OCFN addresses this by first aligning themonocular depthmap to the
scale of the stereo depth using a linear fittingmodel based on reliable stereo
points. Then, it constructs a confidence map to assess the agreement
between the two estimates at each pixel. A certainty-aware blending strategy
is applied, where the final depth at each pixel is determined by a weighted
combination of the scaled monocular and interpolated stereo depth, with
the weights derived from the confidence map. This two-stage fusion fra-
mework ensures that depth values are both complete and geometrically
faithful. Thebenefit ofOCFN is that it enables robust andhigh-fidelity dense
3D reconstruction even in challenging imaging scenarios, such as those
involving low-texture surfaces or complex geometries. The formula deri-
vation of OCFN is presented in detail in the Methods section.

The 3D Perception Results
A series of experiments are conducted to verify the effectiveness of the
proposed system. The algorithm is executed on an Intel Core i9-9900 CPU
and an NVIDIA RTX-3090 GPU. The average processing time for pre-
dicting a depth image with 1200×1200 pixels is 0.6 seconds. The storage
requirement during the inference of OCFN is 2.9GB, including the Dep-
thAnything model, input tensors, and fusion buffers. The experimental
results are shown in Fig. 4. Traditional imaging-model-based stereo
matching methods struggle to produce detailed and reliable depth maps,
especially in challenging scenarios. This limitation arises from their strong
dependence on local texture cues to establish correspondences between
stereo image pairs. In regions with uniform brightness, repetitive patterns,
or poor texture—such as plain surfaces or smooth objects—the lack of
distinct visual features prevents the algorithm from reliably identifying
matching points. Additionally, external factors such as insufficient illumi-
nation, limited transmission efficiency, and minor lens manufacturing
errors further degrade matching accuracy, resulting in sparse, noisy, or
structurally fragmented depth maps. In contrast, our proposed OCFN
method leverages a learned monocular depth prior to compensating for
these weaknesses and significantly enhances depth perception quality. To
illustrate the depth structure intuitively, we use MATLAB’s built-in visua-
lization tool (surf function) to rendering the estimated depth maps into

surfaceplotswith proper lighting andviewing angles, as is shown in thefinal
column. In Fig. 4a, our OCFN depth estimation identifies the occlusion
relationships between the poker cards and successfully maintains the
boundary of each card. Stereo depth estimation, however, only recovers the
depth of each pattern on the cards and fails to preserve the overall shape of
the cards. In Fig. 4b, two plaster busts are placed side by side. The depth
results of the stereo-matching method cannot distinguish the 3D details of
the plaster busts. By ourOCFN, detailed 3D information canbe obtained. In
Fig. 4c, a piece of paper printedwith “THU” is attached to a tilted board and
placed in front of the camera. Sincemost of thepaper is plainwhite, there are
insufficient corresponding points in the stereo estimation. As a result, only
the edges of the letters canbe inferred for depth information. In comparison,
OCFN effectively fuses partial stereo-depth information with the learned
monocular perspective prior, successfully revealing the incline of the paper.
Even the slight depth difference between the paper and the board can be
detected. Thanks to the additional learning-based depth prior inOCFN, the
resulting predictions capture more details and more faithfully reflect the
photometric properties of the original scene. As shown in the rendered 3D
models, the OCFN predictions are both geometrically accurate and visually
pleasing, which is crucial for downstream applications.

Measurement Accuracy and Resolution Analysis
Figure 5a visualizes the measurement accuracy analysis of our proposed
system.We sequentially placed spade poker cards representing 8, 9, 10, J, Q,
and K on a platform, with a 10mm gap between each card. The first poker
card is positioned at 220mm, while the meta-lens is located at 0mm. The
depth reconstruction results demonstrate that the proposed OCFNmethod
achieves high accuracy. The depth of each reconstructed card is smooth and
uniform. Numerically, the predicted depth shows less than a 1% deviation
from the ground truth depth of each card, which is acceptable, especially
when considering potential errors in card positioning. This accuracy arises
from thehybridnature of ourOCFN,whichuses physics-based stereodepth
estimation as the cornerstone of 3Dperception.Other than solely relying on
a learned-based depth estimationmethod, this hybrid framework allows for
more interpretability and reliability of depth prediction.

Figure 5b presents the measurement resolution analysis of the pro-
posed system. In this configuration, a chessboardpattern is affixed to awhite
panel, which is mounted on a motorized translation stage (Thorlabs PT1-
Z9) with a minimum precision of 0.2 μm. The initial distance between the
screen and the metalens is approximately 212.5mm. Experiments are
performedby translating the screen backward in 30 μmincrements, starting

Fig. 3 | Details of the Optical Clue Fusion Network. A low-quality raw absolute
depth map is initially computed from the stereo observations using the binocular
imaging model. To enhance depth perception, a learning-based monocular depth
estimator is applied to generate a high-quality relative depthmap, capturing implicit

depth cues from the scene. These two depth maps are then fused using a certainty-
aware fusion strategy, resulting in a dense and accurate absolute depthmap. Thefinal
output is rendered as high-quality 3Dmodels for applications such as virtual reality,
gaming, and other 3D rendering tasks.

https://doi.org/10.1038/s44310-025-00070-9 Article

npj Nanophotonics |            (2025) 2:28 4

www.nature.com/npjnanophoton


from 0 μm up to 990 μm, resulting in a total of 34 test points. The detailed
experimental setup is described in Section 5 of the SupportingMaterials and
illustrated in Fig. S4. We use the proposed OCFN to keep track of the
translation process and estimate the depth of the screen. The error bars
indicate the standard variations of depths in different screen regions. The
results show that the proposed system can successfully tell the difference
between two planes with a 30 μm shift. Therefore, the proposed system
provides a sensitive tool for precisemanufacturing and other 3D perception
applications with high resolution requirements. We also visualize a few
select depth estimation results of the moving screen. The result is smooth
with low fluctuations, showcasing the reliability and robustness of the
proposed metalenses-based perception system and the corresponding
OCFN depth estimation method.

Discussion
In thiswork,we integrate a binocularmeta-lenswith anOptical Clue Fusion
Network (OCFN) to achieve high-quality 3D depth perception. The fabri-
cated binocularmeta-lens demonstrates a focal length deviation of less than
0.5% from the 10mmdesign target and delivers a high focusing efficiencyof
74% at 532 nm. Moreover, it can be seamlessly integrated with CMOS
sensors to enable single-shot 3D imaging. The system substantially
improves overall depth coverage by merging stereo-derived absolute depth
with a transformer-based monocular relative depth, even in texture-less

regions. The system employs a two-stage fusion process. First, it calibrates
the monocular depth using linear scaling parameters. Subsequently, a 9 × 9
Gaussian-smoothed confidence map is applied to weight and fuse the
monocular and stereo information, producing a dense depthmapwith high
geometric accuracy and detail. The system can reliably capture fine
boundary details and process 1200 × 1200 images in 0.6 seconds. The image
reconstruction can be further accelerated with several strategies, including
1) using smaller monocular depth estimation network variants, 2) reducing
input resolution, and 3) employing model quantization and runtime opti-
mizations such as TensorRT. With these approaches, we believe real-time
3D sensing is feasible. Measurement evaluations show that the recon-
structed depths deviate by less than 1% from ground truth, and the system
can detect shifts as small as 30 μm, underscoring its potential in high-
precision 3D measurement applications. For a practical demonstration of
the system’s capabilities, hand gesture 3D reconstruction examples are
provided in Section 7 of the SupportingMaterials, and the results are shown
in Fig. S5. It demonstrated gesture recognition and human-computer
interaction applications that may be used in portable devices in the future.
This work develops a precise 3D imaging algorithm based on the binocular
meta-lens camera. The high-precision 3D perception and rapid modeling
will enable mobile phone face recognition, medical surgery navigation,
autonomous driving obstacle avoidance, and industrial intelligent quality
inspection, promoting intelligent upgrades in multiple fields.

Fig. 4 | Real-life testing results for various scenarios. The leftmost column shows
the raw captured right image. The second column presents the result from the
physics-based stereo depth estimation method. The third column displays the
outcome of the OCFN method. The rightmost column shows the rendering results

derived from our OCFN depth estimations, which can be applied in gaming and
virtual reality applications. (a) A scenario with several poker cards placed at different
distances; (b) A scenario with two plaster busts; (c) A scenario with an inclined
printed paper.
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Methods
Sample fabrication
A 750-nanometer Gallium Nitride (GaN) layer is deposited on a sapphire
substrate by Metal-Organic Chemical Vapor Deposition (MOCVD), fol-
lowed by a 200-nanometer Silicon Dioxide (SiO2) hard mask deposited
using an Electron-gun evaporator. Polymethyl Methacrylate (PMMA)
photoresist layer is spin-coated, pre-baked at 180 degrees Celsius, and
patterned by Electron BeamLithography (EBL). The sample is developed in
Methyl Isobutyl Ketone/Isopropyl Alcohol (MIBK/IPA) and rinsed in
Isopropyl Alcohol (IPA). A 40-nanometer Chromium (Cr) layer is depos-
ited, and the pattern is transferred to the Cr layer via a lift-off process. The
SiO2 layer with the Cr metal mask is etched using Inductively Coupled
Plasma - Reactive Ion Etching (ICP-RIE) with Carbon Tetrafluoride (CF4).
The patterned SiO2 layer is the hard mask for the high aspect ratio GaN
nanostructures etching. An ICP-RIE process with Argon/Chlorine (Ar/Cl2)
transfers the pattern to the GaN layer. Finally, the residual SiO2 is etched
away with the BufferedOxide Etch (BOE), resulting in GaN nanostructures
on the sapphire substrate. A schematic illustration of this nanofabrication
process is provided in Fig. S1.

Details of the Optical Clue Fusion Network
OCFN integrates both explicit geometric priors and implicit learned
priors to extract depth information. Using a certainty-aware fusion
strategy, the depth maps derived from these dual priors are combined
into a single dense absolute depth map, which serves as the final output.
OCFN leverages the depth-disparity relation between binocular meta-
lenses as an interpretable base for 3D depth perception. As the two
metalenses observe the scene from slightly different viewpoints, corre-
sponding points in the left and right images are offset by a certain
amount, referred to as disparity. By measuring the disparity between
these corresponding points, the depth of objects in the scene can be

computed. This relation is given by:

Z ¼ f B
δ

ð1Þ

whereZ is the distance from the observer to the object, f is the focal length of
the camera, B is the distance between the two metalens, andδis disparity,
which can be calculated with stereo matching algorithms.

OCFN employs a certainty-aware fusion strategy to fuse the depth
information from two priors. The raw absolute map from the stereo
depth is sparse and noisy but also contains absolute depth information.
On the other hand, the dense relative depth map from learning-based
monocular depth visually alignswell with the observed 2D image, but the
depth information is measured on a relative scale and can be distorted.
OCFN gradually fuses these two distinct depthmaps in two stages. In the
first stage, the raw absolute depth image obtained from stereo matching
is refined by removing outlying data points, which are typically erro-
neous and unreliable. In our context, outlying points refer to small,
isolated regions in the stereo depth map that are not spatially connected
with other valid depth estimates. These often result from false stereo
correspondences in textureless or occluded regions. To automatically
detect and eliminate such noise, we apply a connected-component
analysis to the binary depth mask using MATLAB’s bwconncomp
function. Regions with an area smaller than a predefined threshold (e.g.,
200 pixels) are discarded, as they are considered statistically insignificant
and likely to represent spurious matches. This filtering process is fully
automated and removes the need formanual intervention, thus ensuring
objectivity and consistency in the generation of the cleaned sparse
absolute depth. The remaining valid points are then used as ground truth
to fit a linear scalingmodel that maps the relativemonocular depth to an
absolute scale. This involves the estimation of a scaling factor a, and an

Fig. 5 | Measurement accuracy and resolution analysis. (a)We sequentially placed
spade poker cards representing 8, 9, 10, J, Q, and K on a platform with a 10 mm gap
between each card. The first poker card is positioned at 220 mm, while themeta-lens
is placed at 0 mm. We show the measured depth of each card. (b) Depth resolution

test of our system. Experiments are conducted by translating the screen backward in
30 μm increments, starting from 0 μm up to 990 μm, resulting in a total of 34 test
points. Themeasured distances, along with a few selected recovered depth images of
the screen, are visualized.
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offset b. The process is given by:

a ¼
PN

i¼1 Drelative ið Þ � Drelative

� �
Dabs ið Þ � Dabs

� �

PN
i¼1 Drelative ið Þ � Drelative

� �2 ð3Þ

b ¼ Dabs � aDrelative ð4Þ

where N is the number of sparse depth data points in the cleaned raw and
sparse absolute depth map Dabs from stereo. Dabs (i) is the depth at point i.
Drelative (i) is the relative depth at point i. After determining the scaling factor
a and the offset b, we apply them to the entire relative depthmap to produce
the scaled absolute depth Dscaled.

Dscaled ¼ aDrelative þ b ð5Þ

In the second stage, OCFN blends the scaled absolute depth Dscaled
based on its consistency with the cleaned raw absolute depth Dabs. Given a
datapoint i, if Dabs ið Þ aligns well with DscaledðiÞ, we consider this point in
Dscaled to bemore reliable. A pixel-wise confidencemap of depth estimation
can be obtained as

Cscaled ið Þ ¼ 1

1þ Dabs ið Þ � Dscaled ið Þ
		 		 ð6Þ

For non-existing points inDabs ið Þ, the correspondingCscaled ið Þ are set to
ones. For eachpixel inDscaled , we calculate itsweight basedon the confidence.

wscaled ið Þ ¼ GaussianSmooth Cscaled ið Þ� � ð7Þ

where GaussianSmooth is an 9 × 9 Gaussian kernel spread the confidence
from known depth values to neighboring pixels, increasing the reliability of
the depth estimates in the regions surrounding sparse depth points. Finally,
weighted blending is performed to combine the information from Dabs ið Þ
and Dscaled ið Þ. The formula is given by:

Dfused ið Þ ¼ wscaled ið ÞDscaled ið Þ þ 1� wscaled ið Þ� �
Interp Dabs ið Þ

� �
ð8Þ

where Interp is the bilinear interpolating function that helps tofill the gaps in
the cleaned sparse depth map Dabs ið Þ. With this certainty-guided fusion
strategy, the depth information from both priors is sufficiently utilized,
leading to a high-quality dense absolute depth map as the final output.

Data availability
The data supporting this study's findings are available from the corre-
sponding author upon reasonable request.
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